Electrospinning covalently cross-linking biocompatible hydrogelators

被引:12
|
作者
Schultz, Kelly M. [1 ,2 ]
Campo-Deano, Laura [3 ]
Baldwin, Aaron D. [4 ]
Kiick, Kristi L. [4 ]
Clasen, Christian [3 ]
Furst, Eric M. [1 ,2 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] Univ Delaware, Ctr Mol & Engn Thermodynam, Newark, DE 19716 USA
[3] Univ Louvain, Dept Chem Engn, B-3001 Louvain, Belgium
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
基金
欧洲研究理事会; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Microrheology; Electrospinning; Hydrogels; BREAKUP EXTENSIONAL RHEOMETRY; MESENCHYMAL STEM-CELLS; NANOFIBROUS SCAFFOLDS; BIOMATERIAL HYDROGELATORS; AQUEOUS-SOLUTIONS; POLYMER-SOLUTIONS; SMALL-DIAMETER; GEL POINT; FIBERS; MICRORHEOLOGY;
D O I
10.1016/j.polymer.2012.09.060
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Many hydrogel materials of interest are homogeneous on the micrometer scale. Electrospinning, the formation of sub-micrometer to micrometer diameter fibers by a jet of fluid formed under an electric field, is one process being explored to create rich microstructures. However, electrospinning a hydrogel system as it reacts requires an understanding of the gelation kinetics and corresponding rheology near the liquid-solid transition. In this study, we correlate the structure of electrospun fibers of a covalently cross-linked hydrogelator with the corresponding gelation transition and kinetics. Polyethylene oxide (PEO) is used as a carrier polymer in a chemically cross-linking poly(ethylene glycol)-high molecular weight heparin (PEG-HMWH) hydrogel. Using measurements of gelation kinetics from multiple particle tracking microrheology (MPT), we correlate the material rheology with the formation of stable fibers. An equilibrated, cross-linked hydrogel is also spun and the PEO is dissolved. In both cases, microstructural features of the electrospun fibers are retained, confirming the covalent nature of the network. The ability to spin fibers of a cross-linking hydrogel system ultimately enables the engineering of materials and microstructural length scales suitable for biological applications. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [11] CHEMICAL CROSS-LINKING
    BLUESTEI.AC
    RUBBER AGE, 1968, 100 (01): : 72 - &
  • [12] COLLAGEN CROSS-LINKING
    RICARDBLUM, S
    VILLE, G
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY, 1989, 21 (11): : 1185 - 1189
  • [13] CROSS-LINKING TECHNIQUES
    BAUMERT, HG
    FASOLD, H
    METHODS IN ENZYMOLOGY, 1989, 172 : 584 - 609
  • [14] Corneal cross-linking
    Randleman, J. Bradley
    Khandelwal, Sumitra S.
    Hafezi, Farhad
    SURVEY OF OPHTHALMOLOGY, 2015, 60 (06) : 509 - 523
  • [15] Cross-linking of oligoalumosiloxanes
    O. G. Khelevina
    A. S. Malyasova
    M. V. Ishutkina
    Russian Journal of Applied Chemistry, 2013, 86 : 141 - 145
  • [16] Cross-linking of oligoalumosiloxanes
    Khelevina, O. G.
    Malyasova, A. S.
    Ishutkina, M. V.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2013, 86 (02) : 141 - 145
  • [17] COLLAGEN CROSS-LINKING
    RENCOVA, J
    CHEMICKE LISTY, 1981, 75 (11): : 1185 - 1201
  • [18] CROSS-LINKING OF POLYETHERKETONES
    VENKATRAMAN, S
    CHAN, CM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 8 - PMSE
  • [19] CROSS-LINKING OF CELLULOSE
    BECK, KR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 52 - CELL
  • [20] Corneal cross-linking
    Hafezi, Farhad
    Kling, Sabine
    Hafezi, Nikki L.
    Aydemir, M. Enes
    Lu, Nan-Ji
    Hillen, Mark
    Knyazer, Boris
    Awwad, Shady
    Mazzotta, Cosimo
    Kollros, Leonard
    Torres-Netto, Emilio A.
    PROGRESS IN RETINAL AND EYE RESEARCH, 2025, 104