Application of Machine Learning Techniques for Stastical Analysis of Software Reliability Data Sets

被引:0
|
作者
Shanthi, D. [1 ]
Mohanty, R. K. [2 ]
Narsimha, G. [3 ]
机构
[1] GCET, Vallabh Vidyanagar, Gujarat, India
[2] KMIT, Hyderabad, Telangana, India
[3] JNTUS, Sultanpur, India
关键词
software Reliability; Regression; MiniTab; Dataset; Statical Analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Selecting a right data set for right problem became a very big issue. Most of the researches doesn't know what actually a dataset and how to select a suitable dataset for their problem. In this paper we are giving a brief explanation of datasets and applying Software reliability data sets and machine learning techniques for stastical analysis under MINITAB.
引用
收藏
页码:1472 / 1474
页数:3
相关论文
共 50 条
  • [31] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [32] Machine Learning techniques in muliclass problems with application in sensorial analysis
    de Oliveira, Lilian M.
    de Menezes, Fortunato S.
    Cirillo, Marcelo A.
    Saude, Andre V.
    Borem, Flavio M.
    Liska, Gilberto R.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (07):
  • [33] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    Journal of Controlled Release, 2022, 352 : 961 - 969
  • [34] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [35] Application of machine learning techniques to tuberculosis drug resistance analysis
    Kouchaki, Samaneh
    Yang, Yang
    Walker, Timothy M.
    Walker, A. Sarah
    Wilson, Daniel J.
    Peto, Timothy E. A.
    Crook, Derrick W.
    Clifton, David A.
    Hoosdally, Sarah J.
    Cruz, Ana L. Gibertoni
    Carter, Joshua
    Grazian, Clara
    Fowler, Philip W.
    Iqbal, Zamin
    Hunt, Martin
    Smith, E. Grace
    Rathod, Priti
    Jarrett, Lisa
    Matias, Daniela
    Cirillo, Daniela M.
    Borroni, Emanuele
    Battaglia, Simone
    Ghodousi, Arash
    Spitaleri, Andrea
    Cabibbe, Andrea
    Tahseen, Sabira
    Nilgiriwala, Kayzad
    Shah, Sanchi
    Rodrigues, Camilla
    Kambli, Priti
    Surve, Utkarsha
    Khot, Rukhsar
    Niemann, Stefan
    Kohl, Thomas
    Merker, Matthias
    Hoffmann, Harald
    Molodtsov, Nikolay
    Plesnik, Sara
    Ismail, Nazir
    Omar, Shaheed Vally
    Joseph, Lavania
    Marubini, Elliott
    Thwaites, Guy
    Thuong Nguyen Thuy Thuong
    Nhung Hoang Ngoc
    Srinivasan, Vijay
    Moore, David
    Coronel, Jorge
    Solano, Walter
    Gao, George F.
    BIOINFORMATICS, 2019, 35 (13) : 2276 - 2282
  • [36] Application of Machine Learning Techniques to Ocean Mooring Time Series Data
    Sloyan, Bernadette M.
    Chapman, Christopher C.
    Cowley, Rebecca
    Charantonis, Anastase A.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2023, 40 (03) : 241 - 260
  • [37] Fuzzy Sets in Data Analysis: From Statistical Foundations to Machine Learning
    Couso, Ina
    Borgelt, Christian
    Huellermeier, Eyke
    Kruse, Rudolf
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (01) : 31 - 44
  • [38] Negative Data in Data Sets for Machine Learning Training
    Maloney, Michael P.
    Coley, Connor W.
    Genheden, Samuel
    Carson, Nessa
    Helquist, Paul
    Norrby, Per-Ola
    Wiest, Olaf
    ORGANIC LETTERS, 2023, 25 (17) : 2945 - 2947
  • [39] Negative Data in Data Sets for Machine Learning Training
    Maloney, Michael P.
    Coley, Connor W.
    Genheden, Samuel
    Carson, Nessa
    Helquist, Paul
    Norrby, Per-Ola
    Wiest, Olaf
    JOURNAL OF ORGANIC CHEMISTRY, 2023, 88 (09): : 5239 - 5241
  • [40] Analysis and Exploitation of Twitter Data Using Machine Learning Techniques
    Shidaganti, Ganeshayya
    Hulkund, Rameshwari Gopal
    Prakash, S.
    INTERNATIONAL PROCEEDINGS ON ADVANCES IN SOFT COMPUTING, INTELLIGENT SYSTEMS AND APPLICATIONS, ASISA 2016, 2018, 628 : 135 - 146