Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods

被引:478
|
作者
Nuhic, Adnan [1 ]
Terzimehic, Tarik [1 ]
Soczka-Guth, Thomas [1 ]
Buchholz, Michael [2 ]
Dietmayer, Klaus [2 ]
机构
[1] Deutsch ACCUmot GmbH & Co KG, D-73230 Kirchheim U Teck, Nabern, Germany
[2] Univ Ulm, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
关键词
Lithium-ion battery; Battery management system; State of health; Remaining useful life; Support vector machine; MANAGEMENT-SYSTEMS; PART; REGRESSION; PACKS; STATE;
D O I
10.1016/j.jpowsour.2012.11.146
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The accurate estimation of state of health (SOH) and a reliable prediction of the remaining useful life (RUL) of Lithium-ion (Li-ion) batteries in hybrid and electrical vehicles are indispensable for safe and lifetime-optimized operation. The SOH is indicated by internal battery parameters like the actual capacity value. Furthermore, this value changes within the battery lifetime, so it has to be monitored on-board the vehicle. In this contribution, a new data-driven approach for embedding diagnosis and prognostics of battery health in alternative power trains is proposed. For the estimation of SOH and RUL, the support vector machine (SVM) as a well-known machine learning method is used. As the estimation of SOH and RUL is highly influenced by environmental and load conditions, the SVM is combined with a new method for training and testing data processing based on load collectives. For this approach, an intensive measurement investigation was carried out on Li-ion power-cells aged to different degrees ensuring a large amount of data. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:680 / 688
页数:9
相关论文
共 50 条
  • [31] Remaining useful life prediction of lithium-ion batteries using a hybrid model
    Yao, Fang
    He, Wenxuan
    Wu, Youxi
    Ding, Fei
    Meng, Defang
    ENERGY, 2022, 248
  • [32] Health Prognostics for Lithium-ion Battery Based on Hybrid Data-driven Method
    Ma, Yan
    Shan, Ce
    Hu, Yunfeng
    Chen, Hong
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1832 - 1837
  • [33] Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium-Ion Batteries
    Zhao, Jiahui
    Zhu, Yong
    Zhang, Bin
    Liu, Mingyi
    Wang, Jianxing
    Liu, Chenghao
    Hao, Xiaowei
    SUSTAINABILITY, 2023, 15 (06)
  • [34] Comparing deep learning methods to predict the remaining useful life of lithium-ion batteries
    Zraibi, Brahim
    Mansouri, Mohamed
    Loukili, Salah Eddine
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 6298 - 6304
  • [35] Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach
    Ansari, Shaheer
    Ayob, Afida
    Hossain Lipu, Molla Shahadat
    Hussain, Aini
    Saad, Mohamad Hanif Md
    SUSTAINABILITY, 2021, 13 (23)
  • [36] Data-Driven Estimation of Remaining Useful Lifetime and State of Charge for Lithium-Ion Battery
    Du, Zhekai
    Zuo, Lin
    Li, Jingjing
    Liu, Yu
    Shen, Heng Tao
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 356 - 367
  • [37] Data-driven prognostics of remaining useful life for milling machine cutting tools
    Liu, Yen-Chun
    Chang, Yuan-Jen
    Liu, Sheng-Liang
    Chen, Szu-Ping
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [38] Remaining useful life prediction for lithium-ion batteries based on an integrated health indicator
    Sun, Yongquan
    Hao, Xueling
    Pecht, Michael
    Zhou, Yapeng
    MICROELECTRONICS RELIABILITY, 2018, 88-90 : 1189 - 1194
  • [39] State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
    Lin, Qiongbin
    Xu, Zhifan
    Lin, Chih-Min
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10919 - 10933
  • [40] Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects
    Che, Yunhong
    Hu, Xiaosong
    Lin, Xianke
    Guo, Jia
    Teodorescu, Remus
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (02) : 338 - 371