Radiative Heat Transfer Calculation on 16384 GPUs Using a Reverse Monte Carlo Ray Tracing Approach with Adaptive Mesh Refinement

被引:12
|
作者
Humphrey, Alan [1 ]
Sunderland, Daniel [2 ]
Harman, Todd [3 ]
Berzins, Martin [1 ]
机构
[1] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[2] Sandia Natl Labs, POB 5800,MS 1418, Albuquerque, NM 87175 USA
[3] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
关键词
Uintah; Radiation Modeling; Titan; Reverse Monte Carlo Ray Tracing; Mesh Refinement; GPU; Scalability; CODE;
D O I
10.1109/IPDPSW.2016.93
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling thermal radiation is computationally challenging in parallel due to its all-to-all physical and resulting computational connectivity, and is also the dominant mode of heat transfer in practical applications such as next-generation clean coal boilers, being modeled by the Uintah framework. However, a direct all-to-all treatment of radiation is prohibitively expensive on large computers systems whether homogeneous or heterogeneous. DOE Titan and the planned DOE Summit and Sierra machines are examples of current and emerging GPU-based heterogeneous systems where the increased processing capability of GPUs over CPUs exacerbates this problem. These systems require that computational frameworks like Uintah leverage an arbitrary number of on-node GPUs, while simultaneously utilizing thousands of GPUs within a single simulation. We show that radiative heat transfer problems can be made to scale within Uintah on heterogeneous systems through a combination of reverse Monte Carlo ray tracing (RMCRT) techniques combined with AMR, to reduce the amount of global communication. In particular, significant Uintah infrastructure changes, including a novel lock and contention-free, thread-scalable data structure for managing MPI communication requests and improved memory allocation strategies were necessary to achieve excellent strong scaling results to 16384 GPUs on Titan.
引用
收藏
页码:1222 / 1231
页数:10
相关论文
共 50 条