HEAT PULSE PROPAGATION ALONG SILICON NANOFILMS

被引:0
|
作者
Ma, Yanbao [1 ]
机构
[1] Univ Calif Merced, Sch Engn, Merced, CA 95343 USA
关键词
Ballistic phonon; phenomenological model; heat pulse; longitudinal waves; transverse waves; nanofilm; SECOND SOUND; THERMAL-CONDUCTIVITY; TRANSPORT; LEQUATION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Recent advances in nanotechnology create a demand for greater scientific understanding of the transient ballistic phonon transport at the nanoscale. It is believed that ballistic phonons may travel for long distances without destruction, but it is unclear how far they can travel. Here, a numerical model is developed to study phonon transport in silicon nanofilms It is elucidated how thermal pulses are transmitted in silicon nanofilms by longitudinal, ballistic transverse and dispersive transverse phonons. It is found that both ballistic longitudinal and ballistic transverse phonons are highly dissipative so they can only travel for short distances, while dispersive transverse phonons at lower frequencies are less dissipative and can travel for longer distances. There exists a similarity parameter (Knudsen number) in thin-film heat conduction with different thicknesses.
引用
收藏
页码:917 / 922
页数:6
相关论文
共 50 条
  • [31] Heat propagation dynamics in thin silicon layers
    Markus, Ferenc
    Gambar, Katalin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 56 (1-2) : 495 - 500
  • [32] Transient Monte Carlo simulation of phonon transport in silicon nanofilms with the local heat source
    Li, Jiaqi
    Cai, Jiuqing
    Li, Rui
    Liu, Zhichun
    Liu, Wei
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (07) : 2087 - 2098
  • [33] Transient Monte Carlo simulation of phonon transport in silicon nanofilms with the local heat source
    LI JiaQi
    CAI JiuQing
    LI Rui
    LIU ZhiChun
    LIU Wei
    Science China(Technological Sciences), 2024, (07) : 2087 - 2098
  • [34] Phonon ballistic-diffusive heat conduction in silicon nanofilms by Monte Carlo simulations
    Hua, Yu-Chao
    Cao, Bing-Yang
    International Journal of Heat and Mass Transfer, 2014, 78 : 755 - 759
  • [35] Verification of wavelet analysis for a heat pulse propagation experiment
    Kobayashi, T.
    Inagaki, S.
    Itoh, S-I
    Ida, K.
    Oldenbuerger, S.
    Tsuchiya, H.
    Nagayama, Y.
    Kawahata, K.
    Yamada, H.
    Sasaki, M.
    Fujisawa, A.
    Itoh, K.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
  • [36] Fast nondiffusive response of heat and turbulence pulse propagation
    Kenmochi, Naoki
    Ida, Katsumi
    Tokuzawa, Tokihiko
    Mizuno, Yoshinori
    Yasuhara, Ryo
    Funaba, Hisamichi
    Uehara, Hiyori
    Den Hartog, Daniel J.
    Yoshinuma, Mikirou
    Takemura, Yuki
    Igami, Hiroe
    Yanai, Ryoma
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [37] ASYMMETRY OF RADIAL HEAT PULSE-PROPAGATION AT TEXTOR
    KRAMERFLECKEN, A
    ROGISTER, A
    TOKAR, MZ
    WAIDMANN, G
    WOLF, GH
    NUCLEAR FUSION, 1993, 33 (06) : 921 - 928
  • [38] HEAT PULSE-PROPAGATION IN ANTHRACENE-CRYSTALS
    BROUDE, VL
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1980, 57 (1-4): : 9 - 21
  • [39] Heat pulse propagation by second sound in dielectric crystals
    Valenti, A
    Torrisi, M
    Lebon, G
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (15) : 3117 - 3127
  • [40] On the Physical Background of Nerve Pulse Propagation: Heat and Energy
    Peets, Tanel
    Tamm, Kert
    Engelbrecht, Juri
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2021, 46 (04) : 343 - 353