A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS WITH A STRONGLY SINGULAR GRADIENT TERM AND A GENERAL DATUM

被引:0
|
作者
Giachetti, Daniela [1 ]
Petitta, Francesco [1 ]
Segura de Leon, Sergio [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
[2] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
关键词
EQUATIONS; EXISTENCE; GROWTH; CONVERGENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show approximation procedures for studying singular elliptic problems whose model is {-Delta u = b(u) vertical bar(Sic)u vertical bar(2) + f(x), in Omega; u = 0, on partial derivative Omega; where b(u) is singular in the u-variable at u = 0, and f epsilon L-m(Omega), with m > N/2, is a function that does not have a constant sign. We will give an overview of the landscape that occurs when different problems (classified according to the sign of b(s)) are considered. So, in each case and using different methods, we will obtain a priori estimates, prove the convergence of the approximate solutions, and show some regularity properties of the limit.
引用
收藏
页码:913 / 948
页数:36
相关论文
共 50 条
  • [1] Nonlinear singular elliptic problem with gradient term and general datum
    Abdellaoui, B.
    Attar, A.
    Miri, S. E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) : 362 - 377
  • [2] Problems for elliptic singular equations with a gradient term
    Giarrusso, E
    Porru, G
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (01) : 107 - 128
  • [3] ELLIPTIC EQUATIONS HAVING A SINGULAR QUADRATIC GRADIENT TERM AND A CHANGING SIGN DATUM
    Giachetti, Daniela
    Petitta, Francesco
    Segura de Leon, Sergio
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1875 - 1895
  • [4] Existence results for elliptic problems with gradient terms via a priori estimates
    Baldelli L.
    Filippucci R.
    Nonlinear Analysis, Theory, Methods and Applications, 2020, 198
  • [5] A priori estimates for elliptic equations with gradient dependent term and zero order term
    Alvino, A.
    Betta, M. F.
    Mercaldo, A.
    Volpicelli, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 302 : 550 - 584
  • [6] Existence results for elliptic problems with gradient terms via a priori estimates
    Baldelli, Laura
    Filippucci, Roberta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [7] Problems for elliptic singular equations with a quadratic gradient term
    Porru, Giovanni
    Vitolo, Antonio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) : 467 - 486
  • [8] Gradient estimates of general nonlinear singular elliptic equations with measure data
    Zhang, Junjie
    Zheng, Shenzhou
    Feng, Zhaosheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 372 : 402 - 457
  • [9] A priori error estimates of regularized elliptic problems
    Heltai, Luca
    Lei, Wenyu
    NUMERISCHE MATHEMATIK, 2020, 146 (03) : 571 - 596
  • [10] A priori error estimates of regularized elliptic problems
    Luca Heltai
    Wenyu Lei
    Numerische Mathematik, 2020, 146 : 571 - 596