Existence results for elliptic problems with gradient terms via a priori estimates

被引:17
|
作者
Baldelli L. [1 ]
Filippucci R. [2 ]
机构
[1] Department of Mathematics, University of Firenze, Viale Morgagni 40-44, Firenze
[2] Department of Mathematics, University of Perugia, Via Vanvitelli 1, Perugia
关键词
A priori estimates; Elliptic problems; Gradient terms;
D O I
10.1016/j.na.2020.111894
中图分类号
学科分类号
摘要
We prove existence of nonnegative solutions of a Dirichlet problem on a bounded smooth domain of RN for a p-Laplacian elliptic equation with a convection term. Our proof is based on a priori bounds for a suitable weighted norm involving the distance function from the boundary, obtained by adapting the technique developed by Barrios et al. [4] for nonlocal elliptic problems, which is a modification of the classical scaling blow up method due to Gidas and Spruck in the celebrated paper [25]. The conclusion then follows by using topological degree. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Existence results for elliptic problems with gradient terms via a priori estimates
    Baldelli, Laura
    Filippucci, Roberta
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
  • [2] EXISTENCE RESULTS AND A PRIORI ESTIMATES FOR SOLUTIONS OF QUASILINEAR PROBLEMS WITH GRADIENT TERMS
    Filippucci, Roberta
    Lini, Chiara
    OPUSCULA MATHEMATICA, 2019, 39 (02) : 195 - 206
  • [3] A priori estimates and existence for elliptic equations with gradient dependent terms
    Grenon, Nathalie
    Murat, Francois
    Porretta, Alessio
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (01) : 137 - 205
  • [4] Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms
    Grenon, N
    Murat, F
    Porretta, A
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (01) : 23 - 28
  • [5] A priori estimates and Liouville type results for quasilinear elliptic equations involving gradient terms
    Filippucci, Roberta
    Sun, Yuhua
    Zheng, Yadong
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01): : 367 - 400
  • [6] Existence results for quasilinear elliptic and parabolic problems with quadratic gradient terms and sources
    Boccardo, Lucio
    Orsina, Luigi
    Porzio, Maria Michaela
    ADVANCES IN CALCULUS OF VARIATIONS, 2011, 4 (04) : 397 - 419
  • [7] A priori estimates for elliptic equations with reaction terms involving the function and its gradient
    Bidaut-Veron, Marie-Francoise
    Garcia-Huidobro, Marta
    Veron, Laurent
    MATHEMATISCHE ANNALEN, 2020, 378 (1-2) : 13 - 56
  • [8] A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS VIA LIOUVILLE TYPE THEOREMS
    Baldelli, Laura
    Filippucci, Roberta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1883 - 1898
  • [9] A priori estimates for solutions to anisotropic elliptic problems via symmetrization
    Alberico, A.
    di Blasio, G.
    Feo, F.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 986 - 1003
  • [10] A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS WITH A STRONGLY SINGULAR GRADIENT TERM AND A GENERAL DATUM
    Giachetti, Daniela
    Petitta, Francesco
    Segura de Leon, Sergio
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) : 913 - 948