Simulations of complex fluids by mixed lattice Boltzmann - finite difference methods

被引:30
|
作者
Xu, AG
Gonnella, G
Lamura, A
机构
[1] CNR, Ist Applicaz Calcolo, Sez Bari, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Fis, I-70121 Bari, Italy
[3] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
关键词
lattice Boltzmann method; finite difference equation; lamellar phase;
D O I
10.1016/j.physa.2005.09.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the numerical results of simulations of complex fluids under shear flow. We employ a mixed approach which combines the lattice Boltzmann method for solving the Navier-Stokes equation and a finite difference scheme for the convection-diffusion equation. The evolution in time of shear banding phenomenon is studied. This is allowed by the presented numerical model which takes into account the evolution of local structures and their effect on fluid flow. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [21] Viscosity of finite difference lattice Boltzmann models
    Sofonea, V
    Sekerka, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 184 (02) : 422 - 434
  • [22] A finite difference interpretation of the lattice Boltzmann method
    Junk, M
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2001, 17 (04) : 383 - 402
  • [23] Finite difference lattice Boltzmann model based on the two-fluid theory for multicomponent fluids
    Xu, Han
    Dang, Zheng
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2017, 72 (03) : 250 - 267
  • [24] Lattice Boltzmann simulations of complex multiphase flows
    Krafczyk, M
    Lehmann, P
    Filippova, O
    Hänel, D
    Lantermann, U
    MULTIFIELD PROBLEMS: STATE OF THE ART, 2000, : 50 - 57
  • [25] Rotational Slip Flow in Coaxial Cylinders by the Finite-Difference Lattice Boltzmann Methods
    Watari, Minoru
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 9 (05) : 1293 - 1314
  • [26] Boundary conditions for finite difference lattice Boltzmann method
    Watari, Minoru
    Tsutahara, Michihisa
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2002, 68 (676): : 3229 - 3236
  • [27] Lattice Boltzmann model approximated with finite difference expressions
    Dubois, Francois
    Lallemand, Pierre
    Obrecht, Christian
    Tekitek, Mohamed Mandi
    COMPUTERS & FLUIDS, 2017, 155 : 3 - 8
  • [28] Simplified finite difference thermal lattice Boltzmann method
    Azwadi, C. S. Nor
    Tanahashi, T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (22): : 3865 - 3876
  • [29] Finite Difference formulation of any lattice Boltzmann scheme
    Thomas Bellotti
    Benjamin Graille
    Marc Massot
    Numerische Mathematik, 2022, 152 : 1 - 40
  • [30] Finite Difference formulation of any lattice Boltzmann scheme
    Bellotti, Thomas
    Graille, Benjamin
    Massot, Marc
    NUMERISCHE MATHEMATIK, 2022, 152 (01) : 1 - 40