Simulations of complex fluids by mixed lattice Boltzmann - finite difference methods

被引:30
|
作者
Xu, AG
Gonnella, G
Lamura, A
机构
[1] CNR, Ist Applicaz Calcolo, Sez Bari, I-70126 Bari, Italy
[2] Univ Bari, Dipartimento Fis, I-70121 Bari, Italy
[3] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
关键词
lattice Boltzmann method; finite difference equation; lamellar phase;
D O I
10.1016/j.physa.2005.09.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the numerical results of simulations of complex fluids under shear flow. We employ a mixed approach which combines the lattice Boltzmann method for solving the Navier-Stokes equation and a finite difference scheme for the convection-diffusion equation. The evolution in time of shear banding phenomenon is studied. This is allowed by the presented numerical model which takes into account the evolution of local structures and their effect on fluid flow. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [1] Finite-difference lattice-Boltzmann methods for binary fluids
    Xu, AG
    PHYSICAL REVIEW E, 2005, 71 (06):
  • [2] Lattice-Boltzmann simulations of complex fluids
    Gonnella, G
    Orlandini, E
    Yeomans, JM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 783 - 792
  • [3] Finite Difference Lattice Boltzmann Method for Compressible Thermal Fluids
    So, R. M. C.
    Fu, S. C.
    Leung, R. C. K.
    AIAA JOURNAL, 2010, 48 (06) : 1059 - 1071
  • [4] New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound
    Tsutahara, M.
    Kataoka, T.
    Shikata, K.
    Takada, N.
    COMPUTERS & FLUIDS, 2008, 37 (01) : 79 - 89
  • [5] Direct simulations of cavity tones by the Finite Difference Lattice Boltzmann Method
    Tsutahara, Michihisa
    Tajiri, Shinsuke
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2009, 9 (3-5): : 194 - 200
  • [6] A comparative study of lattice Boltzmann and front-tracking finite-difference methods for bubble simulations
    Sankaranarayanan, K
    Kevrekidis, IG
    Sundaresan, S
    Lu, J
    Tryggvason, G
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (01) : 109 - 116
  • [7] Nonuniqueness of lattice Boltzmann schemes derived from finite difference methods
    Kummer, Eliane
    Simonis, Stephan
    EXAMPLES AND COUNTEREXAMPLES, 2024, 7
  • [8] Lattice Boltzmann methods and active fluids
    Carenza, Livio Nicola
    Gonnella, Giuseppe
    Lamura, Antonio
    Negro, Giuseppe
    Tiribocchi, Adriano
    EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (06):
  • [9] Direct simulations of fluid dynamic sounds by the finite difference lattice Boltzmann method
    Tsutahara, M.
    Tamura, A.
    Tajiri, S.
    Long, W.
    COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS XIII, 2007, 46 : 3 - +
  • [10] LATTICE BOLTZMANN MODELS FOR COMPLEX FLUIDS
    FLEKKOY, EG
    HERRMANN, HJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 199 (01) : 1 - 11