Irreversible weak limits of classical dynamical systems

被引:0
|
作者
Gentili, F [1 ]
Morchio, G
机构
[1] Univ Bologna, Dipartimento Fis, Bologna, Italy
[2] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Univ Pisa, Dipartimento Fis, Pisa, Italy
[4] Ist Nazl Fis Nucl, Pisa, Italy
关键词
D O I
10.1063/1.532975
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general discussion is given of weak limits of classical dynamical systems depending on a parameter. The resulting maps are shown to be invertible if and only if they define a group of measure preserving point transformations. The irreversible case automatically leads to positive bistochastic maps and is characterized in terms of convergence properties of the corresponding automorphisms of the observable algebra. Necessary and sufficient conditions are given for the limit to define a time-independent Markov process. Two models are discussed, for a particle in a periodic potential, and for a particle interacting with fixed configurations of external obstacles. (C) 1999 American Institute of Physics. [S0022-2488(99)03208-9].
引用
收藏
页码:4400 / 4418
页数:19
相关论文
共 50 条
  • [31] Decoherence as irreversible dynamical process in open quantum systems
    Blanchard, Philippe
    Olkiewicz, Robert
    OPEN QUANTUM SYSTEMS III: RECENT DEVELOPMENTS, 2006, 1882 : 117 - 160
  • [32] Reversible extensions of irreversible dynamical systems: the C*-method
    Kwasniewski, B. K.
    Lebedev, A. V.
    SBORNIK MATHEMATICS, 2008, 199 (11-12) : 1621 - 1648
  • [33] Weak convergence of dynamical systems in two timescales
    Basak, Gopal K.
    Dasgupta, Amites
    SYSTEMS & CONTROL LETTERS, 2020, 142
  • [34] Strong dynamical screening in weak chemisorption systems
    Dobrodey, NV
    Cederbaum, LS
    Tarantelli, F
    SURFACE SCIENCE, 1998, 402 (1-3) : 508 - 512
  • [35] Weak convergence of dynamical systems in two timescales
    Basak, Gopal K.
    Dasgupta, Amites
    Systems and Control Letters, 2020, 142
  • [36] Strong dynamical screening in weak chemisorption systems
    Universitaet, Heidelberg, Germany
    Surf Sci, 1-3 (508-512):
  • [37] Choosing dynamical systems that predict weak input
    Marzen, Sarah E.
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [38] Classical Fisher information for differentiable dynamical systems
    Sahbani, Mohamed
    Das, Swetamber
    Green, Jason P.
    CHAOS, 2023, 33 (10)
  • [39] Dynamical theory of relaxation in classical and quantum systems
    Gaspard, P
    DYNAMICS OF DISSIPATION, 2002, 597 : 111 - 163