Irreversible weak limits of classical dynamical systems

被引:0
|
作者
Gentili, F [1 ]
Morchio, G
机构
[1] Univ Bologna, Dipartimento Fis, Bologna, Italy
[2] Ist Nazl Fis Nucl, I-40126 Bologna, Italy
[3] Univ Pisa, Dipartimento Fis, Pisa, Italy
[4] Ist Nazl Fis Nucl, Pisa, Italy
关键词
D O I
10.1063/1.532975
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general discussion is given of weak limits of classical dynamical systems depending on a parameter. The resulting maps are shown to be invertible if and only if they define a group of measure preserving point transformations. The irreversible case automatically leads to positive bistochastic maps and is characterized in terms of convergence properties of the corresponding automorphisms of the observable algebra. Necessary and sufficient conditions are given for the limit to define a time-independent Markov process. Two models are discussed, for a particle in a periodic potential, and for a particle interacting with fixed configurations of external obstacles. (C) 1999 American Institute of Physics. [S0022-2488(99)03208-9].
引用
收藏
页码:4400 / 4418
页数:19
相关论文
共 50 条
  • [1] INVERSE LIMITS ENTROPY AND WEAK ISOMORPHISM FOR DISCRETE DYNAMICAL SYSTEMS
    BROWN, JR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 519 - &
  • [3] C*-algebras of irreversible dynamical systems
    Exel, R
    Vershik, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (01): : 39 - 63
  • [4] IRREVERSIBLE EVOLUTION OF DYNAMICAL-SYSTEMS
    MARTINEZ, S
    TIRAPEGUI, E
    LECTURE NOTES IN PHYSICS, 1983, 179 : 239 - 244
  • [5] Weak amenability for dynamical systems
    McKee, Andrew
    STUDIA MATHEMATICA, 2021, 258 (01) : 53 - 70
  • [6] HARMONIC LIMITS OF DYNAMICAL SYSTEMS
    Wichtrey, Tobias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 1432 - 1439
  • [7] Limits of Learning Dynamical Systems
    Berry, Tyrus
    Das, Suddhasattwa
    SIAM-ASA Journal on Uncertainty Quantification, 2025, 67 (01): : 107 - 137
  • [8] Echoes in classical dynamical systems
    Eckhardt, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (02): : 371 - 380
  • [9] Complementarity in classical dynamical systems
    Graben, Peter beim
    Atmanspacher, Harald
    FOUNDATIONS OF PHYSICS, 2006, 36 (02) : 291 - 306
  • [10] Complementarity in Classical Dynamical Systems
    Peter beim Graben
    Harald Atmanspacher
    Foundations of Physics, 2006, 36 : 291 - 306