Resolvent norm decay does not characterize norm continuity

被引:1
|
作者
Matrai, Tamas [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
D O I
10.1007/s11856-008-1054-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there exists a reflexive Banach space (chi, parallel to.parallel to) and a strongly continuous semigroup (T(t))(t >= 0) with generator (A, D(A)) on (chi, parallel to.parallel to) such that lim(mu is an element of R,) (vertical bar mu vertical bar -> infinity) parallel to R(i mu, A)parallel to = 0 but (T(t))(t >= 0) is not eventually norm continuous. This answers a question of Amnon Pazy in the negative.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条
  • [31] Norm resolvent convergence of singularly scaled Schrodinger operators and δ′-potentials
    Golovaty, Yu D.
    Hryniv, R. O.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (04) : 791 - 816
  • [32] The level sets of the resolvent norm and convexity properties of Banach spaces
    Shargorodsky, Eugene
    Shkarin, Stanislav
    ARCHIV DER MATHEMATIK, 2009, 93 (01) : 59 - 66
  • [33] Norm resolvent convergence to magnetic Schrodinger operators with point interactions
    Tamura, H
    REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (04) : 465 - 511
  • [34] The level sets of the resolvent norm and convexity properties of Banach spaces
    Eugene Shargorodsky
    Stanislav Shkarin
    Archiv der Mathematik, 2009, 93 : 59 - 66
  • [35] Norm resolvent convergence of Dirichlet Laplacian in unbounded thin waveguides
    de Oliveira, Cesar R.
    Verri, Alessandra A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (01): : 139 - 158
  • [36] REDUCTION OF DIMENSION AS A CONSEQUENCE OF NORM-RESOLVENT CONVERGENCE AND APPLICATIONS
    Krejcirik, D.
    Raymond, N.
    Royer, J.
    Siegl, P.
    MATHEMATIKA, 2018, 64 (02) : 406 - 429
  • [37] Approximation of Fractals by Discrete Graphs: Norm Resolvent and Spectral Convergence
    Olaf Post
    Jan Simmer
    Integral Equations and Operator Theory, 2018, 90
  • [38] Decay in norm of transfer operators for semiflows
    Melbourne, Ian
    Paviato, Nicolo
    Terhesiu, Dalia
    STUDIA MATHEMATICA, 2022, 266 (02) : 149 - 166
  • [39] ON THE NORM CONTINUITY OF THE HK-FOURIER TRANSFORM
    Arredondo, Juan H.
    Mendoza, Francisco J.
    Reyes, Alfredo
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2018, 25 : 36 - 47
  • [40] On the norm continuity of transition semigroups in Hilbert spaces
    Desch, W
    Rhandi, A
    ARCHIV DER MATHEMATIK, 1998, 70 (01) : 52 - 56