Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring

被引:33
|
作者
Cao, YA
机构
[1] Department of Mathematics, Xiangtan University, Xiangtan, Hunan
关键词
D O I
10.1006/jabr.1996.6866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an arbitrary commutative ring with identity. Denote by t the Lie algebra over R consisting of all upper triangular n by n matrices over R and let b be the Lie subalgebra of t consisting of all matrices of trace 0. The aim of this paper is to give an explicit description of the automorphism group of the Lie algebra t, which extends a result given by Dokovic. In addition, we explicitly describe the automorphism group of the Lie algebra b when n is a unit of R. (C) 1997 Academic Press.
引用
下载
收藏
页码:506 / 513
页数:8
相关论文
共 50 条
  • [21] Lie triple derivation of the Lie algebra of strictly upper triangular matrix over a commutative ring
    Wang, Heng-Tai
    Li, Qing-Guo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 66 - 77
  • [22] A NOTE ON ALGEBRA AUTOMORPHISMS OF TRIANGULAR MATRICES OVER COMMUTATIVE RINGS
    KEZLAN, TP
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 135 : 181 - 184
  • [23] The group of commutativity preserving maps on upper triangular matrices over a commutative ring
    Wang, Dengyin
    Zhu, Min
    Lv, Wenping
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 775 - 783
  • [24] Combinatorial structures and Lie algebras of upper triangular matrices
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 514 - 519
  • [25] THE EQUIVALENCE OF CERTAIN CATEGORIES OF TWISTED LIE AND HOPF-ALGEBRAS OVER A COMMUTATIVE RING
    STOVER, CR
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 86 (03) : 289 - 326
  • [26] TRIANGULAR CONFIGURATIONS AND LIE ALGEBRAS OF STRICTLY UPPER-TRIANGULAR MATRICES
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2014, 13 (01) : 62 - 70
  • [27] Automorphisms of the total graph over upper triangular matrices
    Wang, Long
    Fang, Xianwen
    Tian, Fenglei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (08)
  • [28] Upper triangular matrices over information algebras
    Baeth, Nicholas R.
    Sampson, Rylan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 587 : 334 - 357
  • [29] Group gradings on the Lie and Jordan algebras of upper triangular matrices
    Hitomi E.
    Koshlukov P.
    Yasumura F.
    São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 326 - 347
  • [30] DERIVATIONS OF CERTAIN NILPOTENT LIE ALGEBRAS OVER COMMUTATIVE RINGS
    Chen, Zhengxin
    Wang, Dengyin
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3736 - 3752