Baseline drift and physiological noise removal in high field fMRI data using kernel PCA

被引:0
|
作者
Song, Xiaomu [1 ]
Ji, Tongyou [1 ]
Wyrwicz, Alice M. [1 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Ctr Basic MR Res, ENH Res Inst,Dept Radiol, Evanston, IL 60208 USA
关键词
drift; cardiac rate; respiration; aliasing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Baseline drift and physiological (cardiac and respiratory) fluctuations are among major sources contaminating blood oxygenation level dependent (BOLD) signals in high field functional magnetic resonance imaging (fMRI). Automatically detecting and removing them have been long-standing problems. We propose here a new method, utilizing kernel principal component analysis (KPCA) and frequency analysis, to detect and remove the noise from fMRI data. Differing from thermal noise, the main energy of baseline drift and physiological noise are characterized by the most significant kernel principal components that also contain information on brain structure. To maintain the details of brain anatomy, we filter the feature projections to the components that are found to contain significant baseline drift and physiological noise. This approach is different from most discriminant analysis-based denoising methods that remove insignificant or noisy components before the reconstruction. Experimental results show that the proposed method increases the BOLD contrast and the detection sensitivity of activated voxels.
引用
收藏
页码:441 / 444
页数:4
相关论文
共 50 条
  • [1] A kernel machine-based fMRI physiological noise removal method
    Song, Xiaomu
    Chen, Nan-kuei
    Gaur, Pooja
    [J]. MAGNETIC RESONANCE IMAGING, 2014, 32 (02) : 150 - 162
  • [2] Identification and Attenuation of Physiological Noise in fMRI Using Kernel Techniques
    Song, Xiaomu
    Chen, Nan-Kuei
    Gaur, Pooja
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4852 - 4855
  • [3] Baseline drift removal and denoising of MCG data using EEMD: Role of noise amplitude and the thresholding effect
    Mariyappa, N.
    Sengottuvel, S.
    Parasakthi, C.
    Gireesan, K.
    Janawadkar, M. P.
    Radhakrishnan, T. S.
    Sundar, C. S.
    [J]. MEDICAL ENGINEERING & PHYSICS, 2014, 36 (10) : 1266 - 1276
  • [4] PHYCAA: Data-driven measurement and removal of physiological noise in BOLD fMRI
    Churchill, Nathan W.
    Yourganov, Grigori
    Spring, Robyn
    Rasmussen, Peter M.
    Lee, Wayne
    Ween, Jon E.
    Strother, Stephen C.
    [J]. NEUROIMAGE, 2012, 59 (02) : 1299 - 1314
  • [5] Dynamical components analysis of fMRI data through kernel PCA
    Thirion, B
    Faugeras, O
    [J]. NEUROIMAGE, 2003, 20 (01) : 34 - 49
  • [6] Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
    Kensert, Alexander
    Collaerts, Gilles
    Efthymiadis, Kyriakos
    Van Broeck, Peter
    Desmet, Gert
    Cabooter, Deirdre
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2021, 1646
  • [7] Physiological noise reduction algorithms for fMRI data
    Orlov, Vyacheslav
    Zinchenko, Victoria
    Ushakov, Vadim
    Velichkovsky, Boris
    [J]. 8TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, BICA 2017 (EIGHTH ANNUAL MEETING OF THE BICA SOCIETY), 2018, 123 : 334 - 340
  • [8] An adaptive learning algorithm for ECG noise and baseline drift removal
    Esposito, A
    D'Andria, P
    [J]. NEURAL NETS, 2003, 2859 : 139 - 147
  • [9] Model-based physiological noise removal in fast fMRI
    Agrawal, Uday
    Brown, Emery N.
    Lewis, Laura D.
    [J]. NEUROIMAGE, 2020, 205
  • [10] The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data
    Kasper, Lars
    Bollmann, Steffen
    Diaconescu, Andreea O.
    Hutton, Chloe
    Heinzle, Jakob
    Iglesias, Sandra
    Hauser, Tobias U.
    Sebold, Miriam
    Manjaly, Zina-Mary
    Pruessmann, Klaas P.
    Stephan, Klaas E.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2017, 276 : 56 - 72