Triple Generative Adversarial Networks

被引:29
|
作者
Li, Chongxuan [1 ,2 ]
Xu, Kun [1 ]
Zhu, Jun [1 ]
Liu, Jiashuo [1 ]
Zhang, Bo [1 ]
机构
[1] Tsinghua Univ, Ctr Bioinspired Comp Res, TNList Lab, Dept Comp Sci & Technol,Inst AI, Beijing 100084, Peoples R China
[2] Renmin Univ China, Gaoling Sch AI, Beijing 100872, Peoples R China
关键词
Generators; Generative adversarial networks; Task analysis; Semisupervised learning; Games; Entropy; Linear programming; Generative adversarial network; deep generative model; semi-supervised learning; extremely low data regime; conditional image generation;
D O I
10.1109/TPAMI.2021.3127558
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a unified game-theoretical framework to perform classification and conditional image generation given limited supervision. It is formulated as a three-player minimax game consisting of a generator, a classifier and a discriminator, and therefore is referred to as Triple Generative Adversarial Network (Triple-GAN). The generator and the classifier characterize the conditional distributions between images and labels to perform conditional generation and classification, respectively. The discriminator solely focuses on identifying fake image-label pairs. Theoretically, the three-player formulation guarantees consistency. Namely, under a nonparametric assumption, the unique equilibrium of the game is that the distributions characterized by the generator and the classifier converge to the data distribution. As a byproduct of the three-player formulation, Triple-GAN is flexible to incorporate different semi-supervised classifiers and GAN architectures. We evaluate Triple-GAN in two challenging settings, namely, semi-supervised learning and the extremely low data regime. In both settings, Triple-GAN can achieve excellent classification results and generate meaningful samples in a specific class simultaneously. In particular, using a commonly adopted 13-layer CNN classifier, Triple-GAN outperforms extensive semi-supervised learning methods substantially on several benchmarks no matter data augmentation is applied or not.
引用
收藏
页码:9629 / 9640
页数:12
相关论文
共 50 条
  • [21] A Review: Generative Adversarial Networks
    Gonog, Liang
    Zhou, Yimin
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 505 - 510
  • [22] Optoelectronic generative adversarial networks
    Jumin Qiu
    Ganqing Lu
    Tingting Liu
    Dejian Zhang
    Shuyuan Xiao
    Tianbao Yu
    Communications Physics, 8 (1)
  • [23] A Review on Generative Adversarial Networks
    De Silva, Dilum Maduranga
    Poravi, Guhanathan
    2021 6TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2021,
  • [24] Slimmable Generative Adversarial Networks
    Hou, Liang
    Yuan, Zehuan
    Huang, Lei
    Shen, Huawei
    Cheng, Xueqi
    Wang, Changhu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 7746 - 7753
  • [25] Generative Adversarial Networks Quantization
    Mitrofanov, E.
    Grishkin, V.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (03) : 563 - 565
  • [26] Coupled Generative Adversarial Networks
    Liu, Ming-Yu
    Tuzel, Oncel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [27] Generative Adversarial Networks An overview
    Creswell, Antonia
    White, Tom
    Dumoulin, Vincent
    Arulkumaran, Kai
    Sengupta, Biswa
    Bharath, Anil A.
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) : 53 - 65
  • [28] Deconstructing Generative Adversarial Networks
    Zhu, Banghua
    Jiao, Jiantao
    Tse, David
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7155 - 7179
  • [29] Generative Adversarial Networks for Classification
    Israel, Steven A.
    Goldstein, J. H.
    Klein, Jeffrey S.
    Talamonti, James
    Tanner, Franklin
    Zabel, Shane
    Sallee, Philip A.
    McCoy, Lisa
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [30] Research on state perception and diagnosis of intelligent switches based on triple generative adversarial networks
    Yuan P.
    Wang B.
    Mao W.
    Jiang Y.
    Li P.
    Wang L.
    Yi J.
    Duan H.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (06): : 67 - 75