Twisted homology of quantum SL(2)

被引:32
|
作者
Hadfield, T
Krähmer, U
机构
[1] Univ London, Queen Mary, Sch Math Sci, London E1 4NS, England
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
来源
K-THEORY | 2005年 / 34卷 / 04期
关键词
Hochschild homology; cyclic homology; quantum group;
D O I
10.1007/s10977-005-3118-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the twisted Hochschild and cyclic homology ( in the sense of Kustermans, Murphy and Tuset) of the coordinate algebra of the quantum SL(2) group relative to twisting automorphisms acting by rescaling the standard generators a, b, c, d. We discover a family of automorphisms for which the "twisted" Hochschild dimension coincides with the classical dimension of SL(2, C), thus avoiding the "dimension drop" in Hochschild homology seen for many quantum deformations. Strikingly, the simplest such automorphism is the canonical modular automorphism arising from the Haar functional. In addition, we identify the twisted cyclic cohomology classes corresponding to the three covariant differential calculi over quantum SU(2) discovered by Woronowicz.
引用
收藏
页码:327 / 360
页数:34
相关论文
共 50 条
  • [41] The Twisted Homology of Simplicial Set
    Meng Meng ZHANG
    Jing Yan LI
    Jie WU
    Acta Mathematica Sinica,English Series, 2022, (10) : 1781 - 1802
  • [42] The Twisted Homology of Simplicial Set
    Zhang, Meng Meng
    Li, Jing Yan
    Wu, Jie
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (10) : 1781 - 1802
  • [43] On the quantum group SL(q)(2)
    Bernstein, J
    Khovanova, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (03) : 691 - 708
  • [44] A Categorification of Quantum sl2
    王娜
    王志玺
    吴可
    杨紫峰
    Communications in Theoretical Physics, 2011, 56 (07) : 37 - 45
  • [45] A categorification of the Casimir of quantum sl(2)
    Beliakova, Anna
    Khovanov, Mikhail
    Lauda, Aaron D.
    ADVANCES IN MATHEMATICS, 2012, 230 (03) : 1442 - 1501
  • [46] Equivariant sl(n)-link homology
    Krasner, Daniel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01): : 1 - 32
  • [47] Twisted Homology of Configuration Spaces and Homology of Spaces of Equivariant Maps
    Vassiliev, V. A.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 629 - 633
  • [48] Twisted Homology of Configuration Spaces and Homology of Spaces of Equivariant Maps
    V. A. Vassiliev
    Doklady Mathematics, 2018, 98 : 629 - 633
  • [50] A refined scissors congruence group and the third homology of SL2
    Mirzaii, Behrooz
    Perez, Elvis Torres
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (06)