Twisted homology of quantum SL(2)

被引:32
|
作者
Hadfield, T
Krähmer, U
机构
[1] Univ London, Queen Mary, Sch Math Sci, London E1 4NS, England
[2] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
来源
K-THEORY | 2005年 / 34卷 / 04期
关键词
Hochschild homology; cyclic homology; quantum group;
D O I
10.1007/s10977-005-3118-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We calculate the twisted Hochschild and cyclic homology ( in the sense of Kustermans, Murphy and Tuset) of the coordinate algebra of the quantum SL(2) group relative to twisting automorphisms acting by rescaling the standard generators a, b, c, d. We discover a family of automorphisms for which the "twisted" Hochschild dimension coincides with the classical dimension of SL(2, C), thus avoiding the "dimension drop" in Hochschild homology seen for many quantum deformations. Strikingly, the simplest such automorphism is the canonical modular automorphism arising from the Haar functional. In addition, we identify the twisted cyclic cohomology classes corresponding to the three covariant differential calculi over quantum SU(2) discovered by Woronowicz.
引用
收藏
页码:327 / 360
页数:34
相关论文
共 50 条
  • [1] Twisted Homology of Quantum SL(2) - Part II
    Hadfield, Tom
    Kraehmer, Ulrich
    JOURNAL OF K-THEORY, 2010, 6 (01) : 69 - 98
  • [2] On the Hochschild homology of quantum SL(N)
    Hadfield, Tom
    Krahmer, Ulrich
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (01) : 9 - 13
  • [3] Twisted Hochschild homology of quantum hyperplanes
    Sitarz, A
    K-THEORY, 2005, 35 (1-2): : 187 - 198
  • [4] Twisted cyclic homology of all Podles quantum spheres
    Hadfield, Tom
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 339 - 351
  • [5] ON THE HOMOLOGY OF SL2, A COMPLEMENT
    CATHELINEAU, JL
    MATHEMATICA SCANDINAVICA, 1990, 66 (01) : 17 - 20
  • [6] Twisted homology
    Collinucci, Andres
    Evslin, Jarah
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (03):
  • [8] The third homology of SL2(Q)
    Hutchinson, Kevin
    JOURNAL OF ALGEBRA, 2021, 570 : 366 - 396
  • [9] On the functoriality of sl2 tangle homology
    Beliakova, Anna
    Hogancamp, Matthew
    Putyra, Krzysztof K.
    Wehrli, Stephan M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (03): : 1303 - 1361
  • [10] Cycles in the Chamber Homology for SL (2, F)
    Aeal, Wemedh
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 7 (01): : 45 - 54