Explanatory Interactive Machine Learning

被引:99
|
作者
Teso, Stefano [1 ]
Kersting, Kristian [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Tech Univ Darmstadt, Dept Comp Sci, Darmstadt, Germany
[3] Tech Univ Darmstadt, Ctr Cognit Sci, Darmstadt, Germany
基金
欧洲研究理事会;
关键词
machine learning; active learning; explainable artificial intelligence; interpretability; TRUST;
D O I
10.1145/3306618.3314293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although interactive learning puts the user into the loop, the learner remains mostly a black box for the user. Understanding the reasons behind predictions and queries is important when assessing how the learner works and, in turn, trust. Consequently, we propose the novel framework of explanatory interactive learning where, in each step, the learner explains its query to the user, and the user interacts by both answering the query and correcting the explanation. We demonstrate that this can boost the predictive and explanatory powers of, and the trust into, the learned model, using text (e.g. SVMs) and image classification (e.g. neural networks) experiments as well as a user study.
引用
收藏
页码:239 / 245
页数:7
相关论文
共 50 条
  • [1] Hybrid Explanatory Interactive Machine Learning for Medical Diagnosis
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 105 - 116
  • [2] Bayesian CAIPI: A Probabilistic Approach to Explanatory and Interactive Machine Learning
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 285 - 301
  • [3] Explanatory Interactive Machine Learning Establishing an Action Design Research Process for Machine Learning Projects
    Pfeuffer, Nicolas
    Baum, Lorenz
    Stammer, Wolfgang
    Abdel-Karim, Benjamin M. M.
    Schramowski, Patrick
    Bucher, Andreas M. M.
    Huegel, Christian
    Rohde, Gernot
    Kersting, Kristian
    Hinz, Oliver
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2023, 65 (06) : 677 - 701
  • [4] Explanatory Interactive Machine LearningEstablishing an Action Design Research Process for Machine Learning Projects
    Nicolas Pfeuffer
    Lorenz Baum
    Wolfgang Stammer
    Benjamin M. Abdel-Karim
    Patrick Schramowski
    Andreas M. Bucher
    Christian Hügel
    Gernot Rohde
    Kristian Kersting
    Oliver Hinz
    Business & Information Systems Engineering, 2023, 65 : 677 - 701
  • [5] Explanatory Interactive Machine Learning with Counterexamples from Constrained Large Language Models
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    KI 2024: ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2024, 2024, 14992 : 324 - 331
  • [6] <sc>FairCaipi</sc>: A Combination of Explanatory Interactive and Fair Machine Learning for Human and Machine Bias Reduction
    Heidrich, Louisa
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    Cabitza, Federico
    Chen, Fang
    Zhou, Jianlong
    Holzinger, Andreas
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1519 - 1538
  • [7] Impact of Feedback Type on Explanatory Interactive Learning
    Hagos, Misgina Tsighe
    Curran, Kathleen M.
    Mac Namee, Brian
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2022), 2022, 13515 : 127 - 137
  • [8] Beneficial and harmful explanatory machine learning
    Lun Ai
    Stephen H. Muggleton
    Céline Hocquette
    Mark Gromowski
    Ute Schmid
    Machine Learning, 2021, 110 : 695 - 721
  • [9] Beneficial and harmful explanatory machine learning
    Ai, Lun
    Muggleton, Stephen H.
    Hocquette, Celine
    Gromowski, Mark
    Schmid, Ute
    MACHINE LEARNING, 2021, 110 (04) : 695 - 721
  • [10] The Explanatory Role of Machine Learning in Molecular Biology
    Gross, Fridolin
    ERKENNTNIS, 2025, 90 (04) : 1583 - 1603