<sc>FairCaipi</sc>: A Combination of Explanatory Interactive and Fair Machine Learning for Human and Machine Bias Reduction

被引:3
|
作者
Heidrich, Louisa [1 ]
Slany, Emanuel [1 ,2 ]
Scheele, Stephan [1 ,2 ]
Schmid, Ute [1 ,2 ]
Cabitza, Federico
Chen, Fang
Zhou, Jianlong
Holzinger, Andreas
机构
[1] Univ Bamberg, Cognit Syst, Weberei 5, D-96047 Bamberg, Germany
[2] Fraunhofer Inst Integrated Circuits IIS, Sensory Percept & Analyt, Comprehensible AI, Wolfsmantel 33, D-91058 Erlangen, Germany
来源
关键词
fair machine learning; explanatory and interactive machine learning;
D O I
10.3390/make5040076
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rise of machine-learning applications in domains with critical end-user impact has led to a growing concern about the fairness of learned models, with the goal of avoiding biases that negatively impact specific demographic groups. Most existing bias-mitigation strategies adapt the importance of data instances during pre-processing. Since fairness is a contextual concept, we advocate for an interactive machine-learning approach that enables users to provide iterative feedback for model adaptation. Specifically, we propose to adapt the explanatory interactive machine-learning approach Caipi for fair machine learning. FairCaipi incorporates human feedback in the loop on predictions and explanations to improve the fairness of the model. Experimental results demonstrate that FairCaipi outperforms a state-of-the-art pre-processing bias mitigation strategy in terms of the fairness and the predictive performance of the resulting machine-learning model. We show that FairCaipi can both uncover and reduce bias in machine-learning models and allows us to detect human bias.
引用
收藏
页码:1519 / 1538
页数:20
相关论文
共 50 条
  • [1] Explanatory Interactive Machine Learning
    Teso, Stefano
    Kersting, Kristian
    AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2019, : 239 - 245
  • [2] Hybrid Explanatory Interactive Machine Learning for Medical Diagnosis
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, PT I, AIAI 2024, 2024, 711 : 105 - 116
  • [3] Explanatory Interactive Machine Learning Establishing an Action Design Research Process for Machine Learning Projects
    Pfeuffer, Nicolas
    Baum, Lorenz
    Stammer, Wolfgang
    Abdel-Karim, Benjamin M. M.
    Schramowski, Patrick
    Bucher, Andreas M. M.
    Huegel, Christian
    Rohde, Gernot
    Kersting, Kristian
    Hinz, Oliver
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2023, 65 (06) : 677 - 701
  • [4] Explanatory Interactive Machine LearningEstablishing an Action Design Research Process for Machine Learning Projects
    Nicolas Pfeuffer
    Lorenz Baum
    Wolfgang Stammer
    Benjamin M. Abdel-Karim
    Patrick Schramowski
    Andreas M. Bucher
    Christian Hügel
    Gernot Rohde
    Kristian Kersting
    Oliver Hinz
    Business & Information Systems Engineering, 2023, 65 : 677 - 701
  • [5] Bayesian CAIPI: A Probabilistic Approach to Explanatory and Interactive Machine Learning
    Slany, Emanuel
    Scheele, Stephan
    Schmid, Ute
    ARTIFICIAL INTELLIGENCE-ECAI 2023 INTERNATIONAL WORKSHOPS, PT 1, XAI3, TACTIFUL, XI-ML, SEDAMI, RAAIT, AI4S, HYDRA, AI4AI, 2023, 2024, 1947 : 285 - 301
  • [6] Explanatory machine learning for sequential human teaching
    Lun Ai
    Johannes Langer
    Stephen H. Muggleton
    Ute Schmid
    Machine Learning, 2023, 112 : 3591 - 3632
  • [7] Explanatory machine learning for sequential human teaching
    Ai, Lun
    Langer, Johannes
    Muggleton, Stephen H.
    Schmid, Ute
    MACHINE LEARNING, 2023, 112 (10) : 3591 - 3632
  • [8] Extending a predictable machine learning framework with efficient <sc>gemm</sc>-based convolution routines
    Silva, Iryna De Albuquerque
    Carle, Thomas
    Gauffriau, Adrien
    Pagetti, Claire
    REAL-TIME SYSTEMS, 2023, 59 (3) : 408 - 437
  • [9] Adversarial learning with optimism for bias reduction in machine learning
    Yu-Chen Cheng
    Po-An Chen
    Feng-Chi Chen
    Ya-Wen Cheng
    AI and Ethics, 2024, 4 (4): : 1389 - 1402
  • [10] Channel Estimation and Equalization for SC-FDMA Using Machine Learning
    Fakharizadeh, Pouya
    Karakas, Oemer
    Bovolis, Christos A.
    Breiling, Marco
    Gerstacker, Wolfgang H.
    27TH INTERNATIONAL WORKSHOP ON SMART ANTENNAS, WSA 2024, 2024, : 123 - 130