Analytical Solutions for Advection-Dispersion Equations with Time-Dependent Coefficients

被引:2
|
作者
Deng, Baoqing [1 ]
Long, Fei [1 ]
Gao, Jing [1 ]
机构
[1] Univ Shanghai Sci & Technol, Dept Environm Sci & Engn, Shanghai 200093, Peoples R China
关键词
Advection-diffusion equation; Time-dependent coefficients; Mathematical transformation; TRANSPORT-EQUATION; VARIABLE-COEFFICIENTS; DIFFUSION EQUATION; MODEL;
D O I
10.1061/(ASCE)HE.1943-5584.0001806
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This note clarifies the confusion in the transformation that transforms the advection-dispersion equation with time-dependent coefficients into the advection-dispersion equation with constant coefficients. It is proved that the analytical solutions based on this transformation cannot satisfy the advection-dispersion equation with time-dependent coefficients.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Analytical solutions to the fractional advection-diffusion equation with time-dependent pulses on the boundary
    Rubbab, Qammar
    Mirza, Itrat Abbas
    Qureshi, M. Zubair Akbar
    AIP ADVANCES, 2016, 6 (07):
  • [42] Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation
    van Genuchten, Martinus Th
    Leij, Feike J.
    Skaggs, Todd H.
    Toride, Nobuo
    Bradford, Scott A.
    Pontedeiro, Elizabeth M.
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2013, 61 (02) : 146 - 160
  • [43] A reliable analytical approach for a fractional model of advection-dispersion equation
    Singh, Jagdev
    Secer, Aydin
    Swroop, Ram
    Kumar, Devendra
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01): : 107 - 116
  • [44] Hybridizable discontinuous Galerkin methods for space-time fractional advection-dispersion equations
    Zhao, Jingjun
    Zhao, Wenjiao
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 442
  • [45] Analytical solution for the advection-dispersion transport equation in layered media
    Perez Guerrero, J. S.
    Pimentel, L. C. G.
    Skaggs, T. H.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 56 (1-2) : 274 - 282
  • [46] Godunov mixed methods on triangular grids for advection-dispersion equations
    Mazzia, A
    Bergamaschi, L
    Dawson, CN
    Putti, M
    COMPUTATIONAL GEOSCIENCES, 2002, 6 (02) : 123 - 139
  • [47] ONE-DIMENSIONAL TEMPORALLY DEPENDENT ADVECTION-DISPERSION EQUATION IN POROUS MEDIA: ANALYTICAL SOLUTION
    Yadav, R. R.
    Jaiswal, Dilip Kumar
    Yadav, Hareesh Kumar
    Rana, Gul
    NATURAL RESOURCE MODELING, 2010, 23 (04) : 521 - 539
  • [48] Data assimilation for 2-D advection-dispersion equations
    Kivva, S
    COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, 2003, 2658 : 619 - 628
  • [49] Fractional advection-dispersion equations for modeling transport at the Earth surface
    Schumer, Rina
    Meerschaert, Mark M.
    Baeumer, Boris
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2009, 114
  • [50] DISCRETE TIME-AVERAGED AND LENGTH-AVERAGED SOLUTIONS OF THE ADVECTION-DISPERSION EQUATION
    LEIJ, FJ
    TORIDE, N
    WATER RESOURCES RESEARCH, 1995, 31 (07) : 1713 - 1724