THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN

被引:5
|
作者
Cheng, Y. -H. [1 ]
Lian, W. -C. [2 ]
Wang, W. -C. [3 ]
机构
[1] Natl Taipei Univ Educ, Dept Math & Informat Educ, Taipei 106, Taiwan
[2] Natl Kaohsiung Marine Univ, Dept Informat Management, Kaohsiung 811, Taiwan
[3] Natl Quemoy Univ, Gen Educ Ctr, Kinmen 892, Taiwan
关键词
p-Laplacian; eigenvalue gap; eigenvalue ratio; DIMENSIONAL SCHRODINGER-OPERATORS; RATIOS; GAP; MINIMUM;
D O I
10.1007/s10474-013-0356-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the eigenvalue gap/ratio of the p-Laplacian eigenvalue problems, and obtain the minimizer of the eigenvalue gap for the single-well potential function. For the dual result, we also obtain the minimizer of the eigenvalue ratio for the single-barrier density function for p-Laplacian. This extends the results of the classical problem for the case p=2.
引用
收藏
页码:132 / 151
页数:20
相关论文
共 50 条
  • [21] Limits as p → a of p-laplacian eigenvalue problems perturbed with a concave or convex term
    Charro, Fernando
    Parini, Enea
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (1-2) : 403 - 425
  • [22] Boundedness of the first eigenvalue of the p-Laplacian
    Matei, AM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2183 - 2192
  • [23] Eigenvalue Problem For Perturbated p-Laplacian
    Latifi, Mehdi
    Alimohammady, Mohsen
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 35 - 54
  • [24] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [25] On the fundamental eigenvalue ratio of the p-Laplacian
    Fleckinger, Jacqueline
    Harrell, Evans M., II
    de Thelin, Francois
    BULLETIN DES SCIENCES MATHEMATIQUES, 2007, 131 (07): : 613 - 619
  • [26] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [27] Principal eigenvalue of the p-laplacian in RN
    Furusho, Yasuhiro
    Murata, Yuji
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (08): : 4749 - 4756
  • [28] Eigenvalue bounds for the signless p-Laplacian
    Borba, Elizandro Max
    Schwerdtfeger, Uwe
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [29] Estimates of the principal eigenvalue of the p-Laplacian
    Benedikt, Jiri
    Drabek, Pavel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) : 311 - 315
  • [30] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590