CF-DETR: Coarse-to-Fine Transformers for End-to-End Object Detection

被引:0
|
作者
Cao, Xipeng [1 ,2 ]
Yuan, Peng [2 ]
Feng, Bailan [2 ]
Niu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently proposed DEtection TRansformer (DETR) achieves promising performance for end-to-end object detection. However, it has relatively lower detection performance on small objects and suffers from slow convergence. This paper observed that DETR performs surprisingly well even on small objects when measuring Average Precision (AP) at decreased Intersection-over-Union (IoU) thresholds. Motivated by this observation, we propose a simple way to improve DETR by refining the coarse features and predicted locations. Specifically, we propose a novel Coarse-to-Fine (CF) decoder layer constituted of a coarse layer and a carefully designed fine layer. Within each CF decoder layer, the extracted local information (region of interest feature) is introduced into the flow of global context information from the coarse layer to refine and enrich the object query features via the fine layer. In the fine layer, the multi-scale information can be fully explored and exploited via the Adaptive Scale Fusion(ASF) module and Local Cross-Attention (LCA) module. The multi-scale information can also be enhanced by another proposed Transformer Enhanced FPN (TER) module to further improve the performance. With our proposed framework (named CF-DETR), the localization accuracy of objects (especially for small objects) can be largely improved. As a byproduct, the slow convergence issue of DETR can also be addressed. The effectiveness of CF-DETR is validated via extensive experiments on the coco benchmark. CF-DETR achieves state-of-the-art performance among end-to-end detectors, e.g., achieving 47.8 AP using ResNet-50 with 36 epochs in the standard 3x training schedule.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 50 条
  • [21] End-to-End Detection for Key Equipment in Natural Gas Station with DETR
    Liang, Xinyue
    Su, Huai
    Zhang, Jinjun
    He, Yuxuan
    Qin, Xiaodong
    Yang, Zhaoming
    ADVANCES IN CLEAN AND GREEN ENERGY SOLUTIONS: ICCGE 2024 PROCEEDINGS, 2025, 1333 : 43 - 54
  • [22] DITA: DETR with improved queries for end-to-end temporal action detection
    Lu, Chongkai
    Mak, Man-Wai
    NEUROCOMPUTING, 2024, 596
  • [23] VPDETR: End-to-End Vanishing Point DEtection TRansformers
    Chen, Taiyan
    Ying, Xianghua
    Yang, Jinfa
    Wang, Ruibin
    Guo, Ruohao
    Xing, Bowei
    Shi, Ji
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1192 - 1200
  • [24] Enhanced Sparse Detection for End-to-End Object Detection
    Liao, Yongwei
    Chen, Gang
    Xu, Runnan
    IEEE ACCESS, 2022, 10 : 85630 - 85640
  • [25] FSH-DETR: An Efficient End-to-End Fire Smoke and Human Detection Based on a Deformable DEtection TRansformer (DETR)
    Liang, Tianyu
    Zeng, Guigen
    SENSORS, 2024, 24 (13)
  • [26] EOOD: End-to-end oriented object detection
    Zhang, Caiguang
    Chen, Zilong
    Xiong, Boli
    Ji, Kefeng
    Kuang, Gangyao
    NEUROCOMPUTING, 2025, 621
  • [27] Intrinsic Explainability for End-to-End Object Detection
    Fernandes, Luis
    Fernandes, Joao N. D.
    Calado, Mariana
    Pinto, Joao Ribeiro
    Cerqueira, Ricardo
    Cardoso, Jaime S.
    IEEE ACCESS, 2024, 12 : 2623 - 2634
  • [28] What Makes for End-to-End Object Detection?
    Sun, Peize
    Jiang, Yi
    Xie, Enze
    Shao, Wenqi
    Yuan, Zehuan
    Wang, Changhu
    Luo, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [29] FOF: a fine-grained object detection and feature extraction end-to-end network
    Wenzhong Shen
    Jinpeng Chen
    Jie Shao
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [30] A Coarse-to-fine approach for fast deformable object detection
    Pedersoli, Marco
    Vedaldi, Andrea
    Gonzalez, Jordi
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011, : 1353 - 1360