CF-DETR: Coarse-to-Fine Transformers for End-to-End Object Detection

被引:0
|
作者
Cao, Xipeng [1 ,2 ]
Yuan, Peng [2 ]
Feng, Bailan [2 ]
Niu, Kun [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently proposed DEtection TRansformer (DETR) achieves promising performance for end-to-end object detection. However, it has relatively lower detection performance on small objects and suffers from slow convergence. This paper observed that DETR performs surprisingly well even on small objects when measuring Average Precision (AP) at decreased Intersection-over-Union (IoU) thresholds. Motivated by this observation, we propose a simple way to improve DETR by refining the coarse features and predicted locations. Specifically, we propose a novel Coarse-to-Fine (CF) decoder layer constituted of a coarse layer and a carefully designed fine layer. Within each CF decoder layer, the extracted local information (region of interest feature) is introduced into the flow of global context information from the coarse layer to refine and enrich the object query features via the fine layer. In the fine layer, the multi-scale information can be fully explored and exploited via the Adaptive Scale Fusion(ASF) module and Local Cross-Attention (LCA) module. The multi-scale information can also be enhanced by another proposed Transformer Enhanced FPN (TER) module to further improve the performance. With our proposed framework (named CF-DETR), the localization accuracy of objects (especially for small objects) can be largely improved. As a byproduct, the slow convergence issue of DETR can also be addressed. The effectiveness of CF-DETR is validated via extensive experiments on the coco benchmark. CF-DETR achieves state-of-the-art performance among end-to-end detectors, e.g., achieving 47.8 AP using ResNet-50 with 36 epochs in the standard 3x training schedule.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 50 条
  • [1] L-DETR: A Light-Weight Detector for End-to-End Object Detection With Transformers
    Li, Tianyang
    Wang, Jian
    Zhang, Tibing
    IEEE ACCESS, 2022, 10 : 105685 - 105692
  • [2] Dynamic DETR: End-to-End Object Detection with Dynamic Attention
    Dai, Xiyang
    Chen, Yinpeng
    Yang, Jianwei
    Zhang, Pengchuan
    Yuan, Lu
    Zhang, Lei
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2968 - 2977
  • [3] Non-autoregressive End-to-End TTS with Coarse-to-Fine Decoding
    Wang, Tao
    Liu, Xuefei
    Tao, Jianhua
    Yi, Jiangyan
    Fu, Ruibo
    Wen, Zhengqi
    INTERSPEECH 2020, 2020, : 3984 - 3988
  • [4] V-DETR: Pure Transformer for End-to-End Object Detection
    Dung Nguyen
    Van-Dung Hoang
    Van-Tuong-Lan Le
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 14796 : 120 - 131
  • [5] CPH DETR: Comprehensive Regression Loss for End-to-End Object Detection
    Wu, Jihao
    Li, Shufang
    Kang, Guxia
    Yang, Yuqing
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT II, 2024, 15017 : 93 - 107
  • [6] Motion-Driven Tracking via End-to-End Coarse-to-Fine Verifying
    Wang, Rui
    Zhong, Bineng
    Chen, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1007 - 1019
  • [7] Pruning DETR: efficient end-to-end object detection with sparse structured pruning
    Huaiyuan Sun
    Shuili Zhang
    Xve Tian
    Yuanyuan Zou
    Signal, Image and Video Processing, 2024, 18 : 129 - 135
  • [8] Deeply Tensor Compressed Transformers for End-to-End Object Detection
    Zhen, Peining
    Gao, Ziyang
    Hou, Tianshu
    Cheng, Yuan
    Chen, Hai-Bao
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4716 - 4724
  • [9] Pruning DETR: efficient end-to-end object detection with sparse structured pruning
    Sun, Huaiyuan
    Zhang, Shuili
    Tian, Xve
    Zou, Yuanyuan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 129 - 135
  • [10] Decoupled DETR: Spatially Disentangling Localization and Classification for Improved End-to-End Object Detection
    Zhang, Manyuan
    Song, Guanglu
    Liu, Yu
    Li, Hongsheng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 6578 - 6587