Existence of periodic solutions for a class of p-Laplacian equations

被引:6
|
作者
Chang, Xiaojun [1 ,2 ]
Qiao, Yu [3 ]
机构
[1] NE Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[3] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
periodic solutions; p-Laplacian; Fucik spectrum; Leray-Schauder degree; Borsuk theorem; BOUNDARY-VALUE PROBLEM; NONRESONANCE CONDITIONS; FUCIK SPECTRUM; OPERATORS; SYSTEMS;
D O I
10.1186/1687-2770-2013-96
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the existence of periodic solutions for the one-dimensional p-Laplacian equation -(phi(p)(u'))' = f(t,u), where phi(p)(u) = vertical bar u|(p-2)u (1 < p < + infinity), f is an element of C([0, 2 pi] x R,R). By using some asymptotic interaction of the ratios f(t,u)/vertical bar u vertical bar(p-2)u and p integral(u)(0) f(t,s)ds/vertical bar u vertical bar(p) with the Fucik spectrum of -(phi(p)(u'))' related to periodic boundary condition, we establish a new existence theorem of periodic solutions for the one-dimensional p-Laplacian equation.
引用
收藏
页数:11
相关论文
共 50 条