The five-dimensional complete left-symmetric algebra structures compatible with an Abelian Lie algebra structure

被引:5
|
作者
Dekimpe, K
Igodt, P
Ongenae, V
机构
[1] Katholieke Universiteit Leuven, B-8500 Kortrijk, Campus Kortrijk
关键词
D O I
10.1016/S0024-3795(96)00591-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classification of five-dimensional complete left-symmetric algebras is known to be a hard problem. In this paper we establish an explicit classification of the five-dimensional complete left-symmetric algebras over R, having an abelian associated Lie algebra. A detailed list of all possible isomorphism types is presented. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:349 / 375
页数:27
相关论文
共 50 条
  • [31] ON PARASASAKIAN STRUCTURES ON FIVE-DIMENSIONAL LIE ALGEBRAS
    Smolentsev, N. K.
    Shagabudinova, I. Y.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2021, (69): : 37 - 52
  • [32] Finite presentation of Abelian-by-finite-dimensional Lie algebra
    Bryant, RM
    Groves, JRJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 45 - 57
  • [33] ON THE LIE ALGEBRA STRUCTURE OF HH1 (A) OF A FINITE-DIMENSIONAL ALGEBRA A
    Linckelmann, Markus
    Degrassi, Lleonard Rubio Y.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1879 - 1890
  • [34] Invariant Operators of Five-Dimensional Nonconjugate Subalgebras of the Lie Algebra of the Poincare Group P(1,4)
    Fedorchuk, Vasyl
    Fedorchuk, Volodymyr
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [35] Compatible left-symmetric algebraic structures on high rank Witt and Virasoro algebras
    Xu, Chengkang
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (05)
  • [36] Poisson Structures Compatible with the Cluster Algebra Structure in Grassmannians
    M. Gekhtman
    M. Shapiro
    A. Stolin
    A. Vainshtein
    Letters in Mathematical Physics, 2012, 100 : 139 - 150
  • [37] Poisson Structures Compatible with the Cluster Algebra Structure in Grassmannians
    Gekhtman, M.
    Shapiro, M.
    Stolin, A.
    Vainshtein, A.
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (02) : 139 - 150
  • [38] On the structure of representations of semisimple Lie algebras which are compatible with a Heisenberg algebra
    Campoamor-Stursberg, R
    ACTA PHYSICA POLONICA B, 2005, 36 (10): : 2869 - 2885
  • [39] An eight-dimensional realization of the Clifford algebra in the five-dimensional Galilean covariant spacetime
    Kobayashi, M.
    de Montigny, M.
    Khanna, F. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (12)
  • [40] Five-dimensional AGT Relation, q-W Algebra and Deformed β-ensemble
    Awata, Hidetoshi
    Yamada, Yasuhiko
    INFINITE ANALYSIS 2010: DEVELOPMENTS IN QUANTUM INTEGRABLE SYSTEMS, 2011, B28 : 1 - 15