Optical Control of a Biological Reaction-Diffusion System

被引:21
|
作者
Glock, Philipp [1 ]
Broichhagen, Johannes [2 ,3 ]
Kretschmer, Simon [1 ]
Blumhardt, Philipp [1 ]
Muecksch, Jonas [1 ]
Trauner, Dirk [2 ,4 ]
Schwille, Petra [1 ]
机构
[1] Max Planck Inst Biochem, Cellular & Mol Biophys, Klopferspitz 18, D-82152 Martinsried, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Chem, Butenandtstr 5-13, D-81377 Munich, Germany
[3] Max Planck Inst Med Res, Dept Chem Biol, Jahnstr 29, D-69120 Heidelberg, Germany
[4] NYU, Dept Chem, Silver Ctr Arts & Sci, 100 Washington Sq East, New York, NY 10003 USA
关键词
chemical oscillators; optical control; photoswitches; pattern formation; synthetic biology; CELL-DIVISION; ESCHERICHIA-COLI; PATTERN-FORMATION; CHEMICAL-SYSTEM; MINE; PROTEINS; FEEDBACK; PEPTIDE; WAVES;
D O I
10.1002/anie.201712002
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Patterns formed by reaction and diffusion are the foundation for many phenomena in biology. However, the experimental study of reaction-diffusion (R-D) systems has so far been dominated by chemical oscillators, for which many tools are available. In this work, we developed a photoswitch for the Min system of Escherichia coli, a versatile biological in vitro R-D system consisting of the antagonistic proteins MinD and MinE. A MinE-derived peptide of 19 amino acids was covalently modified with a photoisomerizable crosslinker based on azobenzene to externally control peptide-mediated depletion of MinD from the membrane. In addition to providing an on-off switch for pattern formation, we achieve frequency-locked resonance with a precise 2D spatial memory, thus allowing new insights into Min protein action on the membrane. Taken together, we provide a tool to study phenomena in pattern formation using biological agents.
引用
下载
收藏
页码:2362 / 2366
页数:5
相关论文
共 50 条
  • [31] On the dynamics of a discrete reaction-diffusion system
    Azmy, Y.Y.
    Protopopescu, V.
    Numerical Methods for Partial Differential Equations, 1991, 7 (04) : 385 - 405
  • [32] Qualitative analysis of a reaction-diffusion system
    Wang, MX
    Chen, YL
    APPLIED MATHEMATICS LETTERS, 2005, 18 (02) : 199 - 203
  • [33] Pulse dynamics in a reaction-diffusion system
    Ohta, T
    PHYSICA D-NONLINEAR PHENOMENA, 2001, 151 (01) : 61 - 72
  • [34] Packet waves in a reaction-diffusion system
    Vanag, VK
    Epstein, IR
    PHYSICAL REVIEW LETTERS, 2002, 88 (08) : 4
  • [35] Breathing spots in a reaction-diffusion system
    Haim, D
    Li, G
    Ouyang, Q
    McCormick, WD
    Swinney, HL
    Hagberg, A
    Meron, E
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 190 - 193
  • [36] REACTION-DIFFUSION IN THE AU-IN SYSTEM
    MILLARES, M
    PIERAGGI, B
    LELIEVRE, E
    SOLID STATE IONICS, 1993, 63-5 : 575 - 580
  • [37] DYNAMICS OF A COUPLED REACTION-DIFFUSION SYSTEM
    ETLICHER, B
    WILHELMSSON, H
    PHYSICA SCRIPTA, 1990, 42 (01): : 81 - 84
  • [38] Approximate controllability of a reaction-diffusion system
    Crepeau, Emmanuelle
    Prieur, Christophe
    SYSTEMS & CONTROL LETTERS, 2008, 57 (12) : 1048 - 1057
  • [39] ASYMPTOTIC BEHMIOUR IN A REACTION-DIFFUSION SYSTEM
    黄淑祥
    谢春红
    Acta Mathematica Scientia, 1998, (01) : 57 - 62
  • [40] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94