A Bayesian Approach to Constrained Multi-objective Optimization

被引:1
|
作者
Feliot, Paul [1 ,2 ]
Bect, Julien [1 ,2 ]
Vazquez, Emmanuel [1 ,2 ]
机构
[1] IRT SystemX, Palaiseau, France
[2] SUPELEC, Gif Sur Yvette, France
关键词
SAMPLING CRITERIA; EVOLUTIONARY;
D O I
10.1007/978-3-319-19084-6_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses the problem of derivative-free multi-objective optimization of real-valued functions under multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, nonlinear, expensive-to-evaluate functions. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited. The method we propose to overcome this difficulty has its roots in the Bayesian and multi-objective optimization literatures. More specifically, we make use of an extended domination rule taking both constraints and objectives into account under a unified multi-objective framework and propose a generalization of the expected improvement sampling criterion adapted to the problem. A proof of concept on a constrained multi-objective optimization test problem is given as an illustration of the effectiveness of the method.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 50 条
  • [21] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):
  • [22] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [23] Multi-objective Ranking via Constrained Optimization
    Momma, Michinari
    Garakani, Alireza Bagheri
    Ma, Nanxun
    Sun, Yi
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 111 - 112
  • [24] Batch constrained multi-objective Bayesian optimization using the example of ultrasonic wire bonding
    Reiling, Fabian
    Henke, Christian
    Hunstig, Matthias
    Groeger, Stefan
    Traechtler, Ansgar
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, AIM 2024, 2024, : 1616 - 1622
  • [25] Finding Knees in Bayesian Multi-objective Optimization
    Heidari, Arash
    Qing, Jixiang
    Gonzalez, Sebastian Rojas
    Branke, Jurgen
    Dhaene, Tom
    Couckuyt, Ivo
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 104 - 117
  • [26] Interaction Design With Multi-Objective Bayesian Optimization
    Liao, Yi-Chi
    Dudley, John J.
    Mo, George B.
    Cheng, Chun-Lien
    Chan, Liwei
    Oulasvirta, Antti
    Kristensson, Per Ola
    IEEE PERVASIVE COMPUTING, 2023, 22 (01) : 29 - 38
  • [27] Airfoil optimization based on multi-objective bayesian
    Ruo-Lin Liu
    Qiang Zhao
    Xian-Jun He
    Xin-Yi Yuan
    Wei-Tao Wu
    Ming-Yu Wu
    Journal of Mechanical Science and Technology, 2022, 36 : 5561 - 5573
  • [28] Cooperative Multi-Objective Bayesian Design Optimization
    Mo, George
    Dudley, John
    Chan, Liwei
    Liao, Yi-Chi
    Oulasvirta, Antti
    Kristensson, Per Ola
    ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2024, 14 (02)
  • [29] Airfoil optimization based on multi-objective bayesian
    Liu, Ruo-Lin
    Zhao, Qiang
    He, Xian-Jun
    Yuan, Xin-Yi
    Wu, Wei-Tao
    Wu, Ming-Yu
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (11) : 5561 - 5573
  • [30] Single Interaction Multi-Objective Bayesian Optimization
    Ungredda, Juan
    Branke, Juergen
    Marchi, Mariapia
    Montrone, Teresa
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 132 - 145