Limits on Enstrophy Growth for Solutions of the Three-dimensional Navier-Stokes Equations

被引:43
|
作者
Lu, Lu [1 ]
Doering, Charles R. [2 ,3 ]
机构
[1] Wachovia Secur, New York, NY 10152 USA
[2] Univ Michigan, Dept Math & Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; fluid dynamics; vorticiry; enstrophy;
D O I
10.1512/iumj.2008.57.3716
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The enstrophy, the square of the L-2 norm of the vorticiry field, is a key quantity for the determination of regularity and uniqueness properties for solutions to the Navier-Stokes equations. In this paper we investigate the maximal enstrophy generation rate for velocity fields with a fixed amount of enstrophy, as a function of the magnitude of the enstrophy via numerical solution of the Euler-Lagrange equations for the associated variational problem. The veracity of the novel computational scheme is established by utilizing the exactly soluble version of the problem for Burgers' equation as a benchmark. The results for the three dimensional Navier-Stokes equations are found to saturate functional estimates for the maximal enstrophy production rate as a function of enstrophy.
引用
收藏
页码:2693 / 2727
页数:35
相关论文
共 50 条
  • [1] ENSTROPHY CASCADE IN PHYSICAL SCALES FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Leitmeyer, Keith
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) : 166 - 173
  • [2] Intermittency in solutions of the three-dimensional Navier-Stokes equations
    Gibbon, JD
    Doering, CR
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 478 : 227 - 235
  • [3] Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows
    Kang, Di
    Yun, Dongfang
    Protas, Bartosz
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 893
  • [4] Regularity and singularity in solutions of the three-dimensional Navier-Stokes equations
    Gibbon, J. D.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2121): : 2587 - 2604
  • [5] Exact Solutions of Unsteady Three-Dimensional Navier-Stokes Equations
    Aristov, S. N.
    Polyanin, A. D.
    [J]. DOKLADY PHYSICS, 2009, 54 (07) : 316 - 321
  • [6] Decay of solutions to the three-dimensional generalized Navier-Stokes equations
    Jiu, Quansen
    Yu, Huan
    [J]. ASYMPTOTIC ANALYSIS, 2015, 94 (1-2) : 105 - 124
  • [7] ON THE STABILITY OF GLOBAL SOLUTIONS TO THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Bahouri, Hajer
    Chemin, Jean-Yves
    Gallagher, Isabelle
    [J]. JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2018, 5 : 843 - 911
  • [8] Exact solutions of unsteady three-dimensional Navier-Stokes equations
    S. N. Aristov
    A. D. Polyanin
    [J]. Doklady Physics, 2009, 54 : 316 - 321
  • [9] SOLUTIONS TO THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS FOR INCOMPRESSIBLE FLUIDS
    Jormakka, Jorma
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [10] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426