Quantum walks on Cayley graphs

被引:22
|
作者
Acevedo, OL
Gobron, T
机构
[1] Univ Cergy Pontoise, Lab Phys Theor & Modelisat, F-95302 Cergy Pontoise, France
[2] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
来源
关键词
D O I
10.1088/0305-4470/39/3/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of the construction of quantum walks on Cayley graphs. Our main motivation is the relationship between quantum algorithms and quantum walks. In particular, we discuss the choice of the dimension of the local Hilbert space and consider various classes of graphs on which the structure of quantum walks may differ. We completely characterize quantum walks on free groups and present partial results on more general cases. Some examples are given including a family of quantum walks on the hypercube involving a Clifford algebra.
引用
收藏
页码:585 / 599
页数:15
相关论文
共 50 条
  • [21] Coined quantum walks on weighted graphs
    Wong, Thomas G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (47)
  • [22] Relation between Quantum Walks with Tails and Quantum Walks with Sinks on Finite Graphs
    Konno, Norio
    Segawa, Etsuo
    Stefanak, Martin
    SYMMETRY-BASEL, 2021, 13 (07):
  • [23] Localization of quantum walks on finite graphs
    胡杨熠
    陈平形
    Chinese Physics B, 2016, 25 (12) : 172 - 177
  • [24] Quantum Walks on Regular Graphs and Eigenvalues
    Godsil, Chris
    Guo, Krystal
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [25] Quantum Interference, Graphs, Walks, and Polynomials
    Tsuji, Yuta
    Estrada, Ernesto
    Movassagh, Ramis
    Hoffmann, Roald
    CHEMICAL REVIEWS, 2018, 118 (10) : 4887 - 4911
  • [26] Coined quantum walks on percolation graphs
    Leung, Godfrey
    Knott, Paul
    Bailey, Joe
    Kendon, Viv
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [27] Cayley graphs that have a quantum ergodic eigenbasis
    Assaf Naor
    Ashwin Sah
    Mehtaab Sawhney
    Yufei Zhao
    Israel Journal of Mathematics, 2023, 256 : 599 - 617
  • [28] Cayley graphs that have a quantum ergodic eigenbasis
    Naor, Assaf
    Sah, Ashwin
    Sawhney, Mehtaab
    Zhao, Yufei
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 256 (02) : 599 - 617
  • [29] Using quantum walks to unitarily represent random walks on finite graphs
    Andrade, Matheus Guedes de
    Marquezino, Franklin de Lima
    Figueiredo, Daniel Ratton
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [30] Szegedy quantum walks with memory on regular graphs
    Dan Li
    Ying Liu
    Yu-Guang Yang
    Juan Xu
    Jia-Bin Yuan
    Quantum Information Processing, 2020, 19