Fast growth with crystal splitting of morphology-controllable Bi2S3 flowers on TiO2 nanotube arrays

被引:18
|
作者
Yang, L. X. [1 ]
Ding, Y. B. [1 ]
Luo, S. L. [1 ,2 ]
Luo, Y. [1 ]
Deng, F. [1 ]
Li, Y. [2 ]
机构
[1] Nanchang Hangkong Univ, High Level Lab Jiangxi Prov Persistent Pollutants, Nanchang 310063, Peoples R China
[2] Hunan Univ, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
NUCLEATION; METAL;
D O I
10.1088/0268-1242/28/3/035005
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Bi2S3 crystals with flower-like morphologies are deposited on TiO2 nanotube arrays (NTs) by applying the cathodic pulse electrodeposition (PED) technique at 120 degrees C in 20 s. The highly oriented TiO2 NTs/Ti serving as substrate has high surface energy which is favorable for Gibbs free energy decreasing in nucleation process. Numerous boundaries between NTs are nucleation sites for atomic clusters, resulting in a fast nucleation velocity. Effective and fast heterogeneous nucleation initiates a thermodynamic control growth model and finally leads to the fast formation of highly crystallized Bi2S3 with a typical splitting property. Ethylene glycol (EG) was introduced into the electrolytes to inhibit the typical growth along the c axis ([0 0 1] plane) and facilitate the growth along the ab plane, producing Bi2S3 crystals with variable morphologies from sheaves to flowers by increasing EG contents.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Tuning the catalytic property of TiO2 nanotube arrays for water splitting
    Pan, Xi
    Cai, Qiu Xia
    Wang, Jian-guo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [42] Tuning the catalytic property of TiO2 nanotube arrays for water splitting
    Pan, Xi
    Xie, Qin
    Chen, Wu-lin
    Zhuang, Gui-lin
    Zhong, Xing
    Wang, Jian-guo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) : 2095 - 2105
  • [43] Engineering Bi2S3/BiOI p-n heterojunction to sensitize TiO2 nanotube arrays photoelectrodes for highly efficient solar cells and photocatalysts
    Wang, Qingyao
    Liu, Zhiyuan
    Feng, Hao
    Jin, Rencheng
    Zhang, Shaohua
    Gao, Shanmin
    CERAMICS INTERNATIONAL, 2019, 45 (03) : 3995 - 4002
  • [44] Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant
    Bessekhouad, Y
    Robert, D
    Weber, J
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 163 (03) : 569 - 580
  • [45] Photoelectrocatalytic removal of dye and Cr(VI) pollutants with Ag2S and Bi2S3 co-sensitized TiO2 nanotube arrays under solar irradiation
    Wang, Qingyao
    Jin, Rencheng
    Yin, Changling
    Wang, Meijun
    Wang, Junfu
    Gao, Shanmin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 172 : 303 - 309
  • [46] Acetylacetone-Directed Controllable Synthesis of Bi2S3 Nanostructures with Tunable Morphology
    Zhou, Hongyang
    Xiong, Shenglin
    Wei, Lingzhi
    Xi, Baojuan
    Zhu, Yongchun
    Qian, Yitai
    CRYSTAL GROWTH & DESIGN, 2009, 9 (09) : 3862 - 3867
  • [47] Enhancing Bi2S3 sensitised mesoporous TiO2 solar cells by co-sensitisation with Bi2S3/CdS quantum dots
    Annamalai, Alagappan
    Kim, Kyungho
    Jung, Kyungeun
    Lee, Man-Jong
    Ahn, Joon Mo
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2016, 13 (4-6) : 354 - 364
  • [48] Controllable coverage of Bi2S3 quantum dots on one-dimensional TiO2 nanorod arrays by pulsed laser deposition technique for high photoelectrochemical properties
    Han, Minmin
    Guo, Hongjian
    Li, Bo
    Jia, Junhong
    Wang, Wenzhen
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (12) : 4820 - 4827
  • [49] Preparation of Bi2S3/TiO2 nanocone photoanode and their photoelectrocatalysis degradation of hygromycin
    Zhang H.
    Zhou L.
    Zhang C.
    Qian G.
    Xie C.
    Zhu L.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (10): : 5548 - 5557
  • [50] Influence of Bi sources on TiO2/Bi2S3 composite films prepared by hydrothermal method
    Xinli Li
    Meilin Liu
    Di Zhu
    Dao Chen
    Ming Yang
    Mingji Zhang
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 4662 - 4671