Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices

被引:12
|
作者
Li, Shigui [1 ]
Chen, Zhen [1 ]
Li, Chaoqian [2 ]
Zhao, Jianxing [3 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
[3] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 03期
基金
中国国家自然科学基金;
关键词
H-eigenvalues; Z-eigenvalues; C-eigenvalues; Nonsingular M-tensors; Tensor complementarity problems; Piezoelectric-type tensors; 15A18; 15A42; 15A69; SOLVING MULTILINEAR SYSTEMS; POLYADIC DECOMPOSITION; OPERATORS; SETS;
D O I
10.1007/s40314-020-01245-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Upper and lower bounds for H-eigenvalues, Z-spectral radius and C-spectral radius of a third-order tensor are given by the minimax eigenvalue of symmetric matrices extracted from this given tensor. As applications, a sufficient condition for third-order nonsingular M-tensors and some valid sufficient conditions for the uniqueness and solvability of the solutions to multi-linear systems, tensor complementarity problems and non-homogeneous systems are proposed.
引用
收藏
页数:14
相关论文
共 50 条