Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices

被引:12
|
作者
Li, Shigui [1 ]
Chen, Zhen [1 ]
Li, Chaoqian [2 ]
Zhao, Jianxing [3 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Yunnan Univ, Sch Math & Stat, Kunming 650091, Yunnan, Peoples R China
[3] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 03期
基金
中国国家自然科学基金;
关键词
H-eigenvalues; Z-eigenvalues; C-eigenvalues; Nonsingular M-tensors; Tensor complementarity problems; Piezoelectric-type tensors; 15A18; 15A42; 15A69; SOLVING MULTILINEAR SYSTEMS; POLYADIC DECOMPOSITION; OPERATORS; SETS;
D O I
10.1007/s40314-020-01245-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Upper and lower bounds for H-eigenvalues, Z-spectral radius and C-spectral radius of a third-order tensor are given by the minimax eigenvalue of symmetric matrices extracted from this given tensor. As applications, a sufficient condition for third-order nonsingular M-tensors and some valid sufficient conditions for the uniqueness and solvability of the solutions to multi-linear systems, tensor complementarity problems and non-homogeneous systems are proposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices
    Shigui Li
    Zhen Chen
    Chaoqian Li
    Jianxing Zhao
    Computational and Applied Mathematics, 2020, 39
  • [2] A study on the C-eigenvalue of the third-order tensors
    Liu, Jie
    Liu, Xiaoji
    Jin, Hongwei
    Wang, Hongxing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [3] CANONICAL POLYADIC DECOMPOSITION OF THIRD-ORDER TENSORS: REDUCTION TO GENERALIZED EIGENVALUE DECOMPOSITION
    Domanov, Ignat
    De Lathauwer, Lieven
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (02) : 636 - 660
  • [4] An Inverse Eigenvalue Problem for a Class of Second- and Third-Order Matrices
    Perepelkin, E. A.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2015, 8 (03) : 260 - 266
  • [5] Eigenvalue bounds for symmetric matrices with entries in one interval
    Leng, Huinan
    He, Zhiqing
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 299 : 58 - 65
  • [6] Filtering algorithm for eigenvalue bounds of fuzzy symmetric matrices
    Mahato, Nisha Rani
    Chakraverty, Snehashish
    ENGINEERING COMPUTATIONS, 2016, 33 (03) : 855 - 875
  • [7] C-EIGENVALUE INTERVALS FOR PIEZOELECTRIC-TYPE TENSORS VIA SYMMETRIC MATRICES
    Liu, Xifu
    Yin, Shuheng
    Li, Hanyu
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (06) : 3349 - 3356
  • [8] Tetrahedral Frame Fields via Constrained Third-Order Symmetric Tensors
    Dmitry Golovaty
    Matthias Kurzke
    Jose Alberto Montero
    Daniel Spirn
    Journal of Nonlinear Science, 2023, 33
  • [9] Tetrahedral Frame Fields via Constrained Third-Order Symmetric Tensors
    Golovaty, Dmitry
    Kurzke, Matthias
    Montero, Jose Alberto
    Spirn, Daniel
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (03)
  • [10] Projection Scheme and Adaptive Control for Symmetric Matrices With Eigenvalue Bounds
    Moghe, Rahul
    Akella, Maruthi R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (03) : 1738 - 1745