Hybrid and Convolutional Neural Networks for Locomotion Recognition

被引:8
|
作者
Osmani, Aomar [1 ]
Hamidi, Massinissa [1 ]
机构
[1] PRES Sorbonne Paris Cite, LIPN UMR CNRS 7030, F-93430 Villetaneuse, France
关键词
Locomotion recognition; convolutional and recurrent neural networks; neural architecture search;
D O I
10.1145/3267305.3267520
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper explores the relevance of an approach based exclusively on deep neural networks for locomotion recognition. This work is done within the Sussex-Huawei Locomotion-Transportation (SHL) recognition challenge as team Power of Things. Provided data used during the experiments is part of the SHL dataset for which we emphasize the adaptability to different applications of the ubiquitous computing. This quality emerges from the broad spectrum of modalities that this dataset encompasses, they are 16 in total. More than 500 different convolutional and hybrid architectures are evaluated, and a Bayesian optimization procedure is used for hyper-parameters space exploration. The influence of these hyper-parameters on performances is analyzed using the fANOVA framework. Best models achieve a recognition rate of about 92% measured by the f1 score.
引用
收藏
页码:1531 / 1540
页数:10
相关论文
共 50 条
  • [31] Personality Recognition Using Convolutional Neural Networks
    Gimenez, Maite
    Paredes, Roberto
    Rosso, Paolo
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, CICLING 2017, PT II, 2018, 10762 : 313 - 323
  • [32] Facial Expression Recognition with Convolutional Neural Networks
    Singh, Shekhar
    Nasoz, Fatma
    2020 10TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2020, : 324 - 328
  • [33] Convolutional Neural Networks for the Recognition of Malayalam Characters
    Anil, R.
    Manjusha, K.
    Kumar, S. Sachin
    Soman, K. P.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 2, 2015, 328 : 493 - 500
  • [34] Evaluation of convolutional neural networks for visual recognition
    Neubauer, C
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (04): : 685 - 696
  • [35] AN ANALYSIS OF CONVOLUTIONAL NEURAL NETWORKS FOR SPEECH RECOGNITION
    Huang, Jui-Ting
    Li, Jinyu
    Gong, Yifan
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 4989 - 4993
  • [36] Convolutional Neural Networks for Traffic Sign Recognition
    Wei, Zhonghua
    Gu, Heng
    Zhang, Ran
    Peng, Jingxuan
    Qui, Shi
    CICTP 2021: ADVANCED TRANSPORTATION, ENHANCED CONNECTION, 2021, : 399 - 409
  • [37] CONVOLUTIONAL NEURAL NETWORKS FOR NOISE SIGNAL RECOGNITION
    Portsev, Ruslan J.
    Makarenko, Andrey V.
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [38] Ear Recognition In The Wild with Convolutional Neural Networks
    Ramos-Cooper, Solange
    Camara-Chavez, Guillermo
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [39] Speech Recognition Based on Convolutional Neural Networks
    Du Guiming
    Wang Xia
    Wang Guangyan
    Zhang Yan
    Li Dan
    2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP), 2016, : 708 - 711
  • [40] Recognition of flowers using convolutional neural networks
    Alkhonin, Abdulrahman
    Almutairi, Abdulelah
    Alburaidi, Abdulmajeed
    Saudagar, Abdul Khader Jilani
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2020, 8 (03) : 186 - 197