Resolving capacity of the circular Zernike polynomials

被引:24
|
作者
Svechnikov, M. V. [1 ]
Chkhalo, N. I. [1 ]
Toropov, M. N. [1 ]
Salashchenko, N. N. [1 ]
机构
[1] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
来源
OPTICS EXPRESS | 2015年 / 23卷 / 11期
基金
俄罗斯基础研究基金会;
关键词
ORTHONORMAL POLYNOMIALS; COEFFICIENTS; ROUGHNESS;
D O I
10.1364/OE.23.014677
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Circular Zernike polynomials are often used for approximation and analysis of optical surfaces. In this paper, we analyse their lateral resolving capacity, illustrating the effects of a lack of approximation by a finite set of polynomials and answering the following questions: What is the minimum number of polynomials that is necessary to describe a local deformation of a certain size? What is the relationship between the number of approximating polynomials and the spatial spectrum of the approximation? What is the connection between the mean-square error of approximation and the number of polynomials? The main results of this work are the formulas for calculating the error of fitting the relief and the connection between the width of the spatial spectrum and the order of approximation. (C) 2015 Optical Society of America
引用
收藏
页码:14677 / 14694
页数:18
相关论文
共 50 条
  • [31] Zernike annular polynomials and atmospheric turbulence
    Dai, Guang-ming
    Mahajan, Virendra N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (01) : 139 - 155
  • [32] Zernike polynomials for photometric characterization of LEDs
    Velazquez, J. L.
    Ferrero, A.
    Pons, A.
    Campos, J.
    Hernanz, M. L.
    JOURNAL OF OPTICS, 2016, 18 (02)
  • [33] Surface reconstruction by using Zernike Polynomials
    Schilke, Manon
    Liebl, Johannes
    Wuensche, Christine
    THIRD EUROPEAN SEMINAR ON PRECISION OPTICS MANUFACTURING, 2016, 10009
  • [34] A GENERALIZATION OF RADIAL POLYNOMIALS OF F ZERNIKE
    MYRICK, DR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (03) : 476 - &
  • [35] An Introduction to the Quaternionic Zernike Spherical Polynomials
    Cacao, I.
    Morais, J.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 502 - 505
  • [36] Recursive computation of generalised Zernike polynomials
    Area, I.
    Dimitrov, Dimitar K.
    Godoy, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 58 - 64
  • [37] CLOSED CARTESIAN REPRESENTATION OF THE ZERNIKE POLYNOMIALS
    CARPIO, M
    MALACARA, D
    OPTICS COMMUNICATIONS, 1994, 110 (5-6) : 514 - 516
  • [38] RECURRENCE RELATION FOR CALCULATING ZERNIKE POLYNOMIALS
    KINTNER, EC
    OPTICA ACTA, 1976, 23 (06): : 499 - 500
  • [39] ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE
    NOLL, RJ
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) : 207 - 211
  • [40] Optimal sampling patterns for Zernike polynomials
    Ramos-Lopez, D.
    Sanchez-Granero, M. A.
    Fernandez-Martinez, M.
    Martinez-Finkelshtein, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 247 - 257