Nondestructive, real-time determination and visualization of cellulose, hemicellulose and lignin by luminescent oligothiophenes

被引:30
|
作者
Choong, Ferdinand X. [1 ]
Back, Marcus [2 ]
Steiner, Svava E. [1 ]
Melican, Keira [1 ]
Nilsson, K. Peter R. [2 ]
Edlund, Ulrica [3 ]
Richter-Dahlfors, Agneta [1 ]
机构
[1] Karolinska Inst, Dept Neurosci, Swedish Med Nanosci Ctr, SE-17177 Stockholm, Sweden
[2] Linkoping Univ, Div Chem, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[3] KTH Royal Inst Technol, Fiber & Polymer Technol, SE-10044 Stockholm, Sweden
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
基金
欧洲研究理事会;
关键词
CELL-WALL; LIGNOCELLULOSIC BIOMASS; SPECTRAL ASSIGNMENT; LIGANDS; PERFORMANCE; PLETHORA; PROBES;
D O I
10.1038/srep35578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enabling technologies for efficient use of the bio-based feedstock are crucial to the replacement of oil-based products. We investigated the feasibility of luminescent conjugated oligothiophenes (LCOs) for non-destructive, rapid detection and quality assessment of lignocellulosic components in complex biomass matrices. A cationic pentameric oligothiophene denoted p-HTEA (pentamer hydrogen thiophene ethyl amine) showed unique binding affinities to cellulose, lignin, hemicelluloses, and cellulose nanofibrils in crystal, liquid and paper form. We exploited this finding using spectrofluorometric methods and fluorescence confocal laser scanning microscopy, for sensitive, simultaneous determination of the structural and compositional complexities of native lignocellulosic biomass. With exceptional photostability, p-HTEA is also demonstrated as a dynamic sensor for real-time monitoring of enzymatic cellulose degradation in cellulolysis. These results demonstrate the use of p-HTEA as a non-destructive tool for the determination of cellulose, hemicellulose and lignin in complex biomass matrices, thereby aiding in the optimization of biomass-converting technologies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Real-time image visualization for sensors
    Anding, DC
    Szabo, A
    TECHNOLOGIES FOR SYNTHETIC ENVIRONMENTS: HARDWARE-IN-THE-LOOP TESTING, 1996, 2741 : 232 - 241
  • [22] Real-time visualization of dynamic terrain
    Cai, XQ
    Li, FX
    Zhan, SY
    SYSTEM SIMULATION AND SCIENTIFIC COMPUTING, VOLS 1 AND 2, PROCEEDINGS, 2005, : 450 - 455
  • [23] REAL-TIME VISUALIZATION OF CONCURRENT PROCESSES
    SHARMA, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 457 : 852 - 862
  • [24] RNA localization: Visualization in real-time
    Singer, RH
    CURRENT BIOLOGY, 2003, 13 (17) : R673 - R675
  • [25] Determination of cellulose, hemicellulose and lignin content using near-infrared spectroscopy in flax fiber
    Huang, Jing
    Yu, Chongwen
    TEXTILE RESEARCH JOURNAL, 2019, 89 (23-24) : 4875 - 4883
  • [26] Real-Time Visualization of Joint Cavitation
    Kawchuk, Gregory N.
    Fryer, Jerome
    Jaremko, Jacob L.
    Zeng, Hongbo
    Rowe, Lindsay
    Thompson, Richard
    PLOS ONE, 2015, 10 (04):
  • [27] Real-time visualization in the offshore industry
    Chapman, P
    Stevens, P
    Wills, D
    Brookes, G
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2001, 21 (04) : 6 - 10
  • [28] Real-Time Visualization in Anisotropic Geometries
    Kopczynski, Eryk
    Celinska-Kopczynska, Dorota
    EXPERIMENTAL MATHEMATICS, 2022, 31 (04) : 1177 - 1196
  • [29] Real-time visualization of animated trees
    Wesslén, D
    Seipel, S
    VISUAL COMPUTER, 2005, 21 (06): : 397 - 405
  • [30] Real-time visualization of Japanese artcraft
    Durikovic, R
    Kimura, R
    Kolchin, K
    COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 2003, : 184 - 189