KAM theory for quasi-periodic equilibria in 1D quasi-periodic media: II. Long-range interactions

被引:5
|
作者
Su, Xifeng [1 ]
de la Llave, Rafael [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
FRENKEL-KONTOROVA MODELS; PHONON LOCALIZATION; TRANSITION; STATES;
D O I
10.1088/1751-8113/45/45/455203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider Frenkel-Kontorova models corresponding to one-dimensional quasi-crystal with non-nearest neighbor and many-body interactions. We formulate and prove a KAM type theorem which establishes the existence of quasi-periodic solutions. The interactions we consider do not need to be of finite range or involve finitely many particles, but have to decay sufficiently fast with respect to the distance of the position of the atoms. The KAM theorem we present has an a posteriori format. We do not need to assume that the system is close to integrable. We just assume that there is an approximate solution for the functional equation which satisfies some non-degeneracy conditions.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A renormalization operator for 1D maps under quasi-periodic perturbations
    Jorba, A.
    Rabassa, P.
    Tatjer, J. C.
    NONLINEARITY, 2015, 28 (04) : 1017 - 1042
  • [32] SUPERSTABLE PERIODIC ORBITS OF 1D MAPS UNDER QUASI-PERIODIC FORCING AND REDUCIBILITY LOSS
    Jorba, Angel
    Rabassa, Pau
    Carles Tatjer, Joan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (02) : 589 - 597
  • [33] OPTICAL-PROPERTIES OF QUASI-PERIODIC MEDIA
    PANG, GD
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (31): : 5455 - 5463
  • [34] The quasi-periodic character of intermolecular interactions in water
    Drozdov A.V.
    Nagorskaya T.P.
    Biophysics, 2014, 59 (6) : 973 - 985
  • [35] A quasi-periodic hybrid undulator at BESSY II
    Bahrdt, J
    Frentrup, W
    Gaupp, A
    Scheer, M
    Gudat, W
    Ingold, G
    Sasaki, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 467 : 130 - 133
  • [36] Long quasi-periodic oscillations of the faculae and pores
    Riehokainen, A.
    Strekalova, P.
    Solov'ev, A.
    Smirnova, V.
    Zhivanovich, I.
    Moskaleva, A.
    Varun, N.
    ASTRONOMY & ASTROPHYSICS, 2019, 627
  • [37] QUASI-PERIODIC SOLUTIONS OF 1D NONLINEAR SCHRODINGER EQUATION WITH A MULTIPLICATIVE POTENTIAL
    Ren, Xiufang
    TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (06): : 2191 - 2211
  • [38] Quasi-periodic solutions for 1D wave equation with higher order nonlinearity
    Gao, Meina
    Liu, Jianjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1466 - 1493
  • [39] THE FLOQUET THEORY FOR QUASI-PERIODIC LINEAR SYSTEMS
    林振声
    Applied Mathematics and Mechanics(English Edition), 1982, (03) : 365 - 381
  • [40] Optimum filter theory for quasi-periodic signals
    Nishi, K
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2003, 86 (09): : 43 - 53