Recurrent random walks, Liouville's theorem and circle packings

被引:6
|
作者
Dubejko, T [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
10.1017/S0305004196001557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been shown that univalent circle packings filling the complex plane C are unique up to similarities of C. Here we prove that bounded degree branched circle packings properly covering C are uniquely determined, up to similarities of C, by their branch sets. In particular, when branch sets of the packings considered are empty we obtain the earlier result. We also establish a circle packing analogue of Liouville's theorem: if f is a circle packing map whose domain packing is infinite, univalent, and has recurrent tangency graph, then the ratio map associated with f is either unbounded or constant.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [41] EMPIRICAL PROCESSES FOR RECURRENT AND TRANSIENT RANDOM WALKS IN RANDOM SCENERY
    Guillotin-Plantard, Nadine
    Pene, Francoise
    Wendler, Martin
    ESAIM-PROBABILITY AND STATISTICS, 2020, 24 : 127 - 137
  • [42] Graph Recurrent Networks with Attributed Random Walks
    Huang, Xiao
    Song, Qingquan
    Li, Yuening
    Hu, Xia
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 732 - 740
  • [44] A functional limit theorem for lattice oscillating random walks
    Tran Duy Vo
    Peigne, Marc
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1433 - 1457
  • [45] Central limit theorem for a class of nonhomogeneous random walks
    Yarotskii, DA
    MATHEMATICAL NOTES, 2001, 69 (5-6) : 690 - 695
  • [46] DICHOTOMIC THEOREM FOR RANDOM-WALKS ON HOMOGENEOUS SPACES
    HENNION, H
    ROYNETTE, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (05): : 399 - 401
  • [47] Central Limit Theorem for a Class of Nonhomogeneous Random Walks
    D. A. Yarotskii
    Mathematical Notes, 2001, 69 : 690 - 695
  • [48] A RENEWAL THEOREM FOR RANDOM-WALKS IN MULTIDIMENSIONAL TIME
    GALAMBOS, J
    INDLEKOFER, KH
    KATAI, I
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 300 (02) : 759 - 769
  • [49] A LOCAL LIMIT THEOREM FOR A CERTAIN CLASS OF RANDOM WALKS
    ROSENKRANTZ, WA
    ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (04): : 855 - +
  • [50] The ergodic theorem for random walks on finite quantum groups
    McCarthy, J. P.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) : 3850 - 3871