Recurrent random walks, Liouville's theorem and circle packings

被引:6
|
作者
Dubejko, T [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
10.1017/S0305004196001557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It has been shown that univalent circle packings filling the complex plane C are unique up to similarities of C. Here we prove that bounded degree branched circle packings properly covering C are uniquely determined, up to similarities of C, by their branch sets. In particular, when branch sets of the packings considered are empty we obtain the earlier result. We also establish a circle packing analogue of Liouville's theorem: if f is a circle packing map whose domain packing is infinite, univalent, and has recurrent tangency graph, then the ratio map associated with f is either unbounded or constant.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [1] THE UNIFORMIZATION THEOREM FOR CIRCLE PACKINGS
    BEARDON, AF
    STEPHENSON, K
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) : 1383 - 1425
  • [2] Central limit theorem for recurrent random walks on a strip with bounded potential
    Dolgopyat, D.
    Goldsheid, I.
    NONLINEARITY, 2018, 31 (07) : 3381 - 3412
  • [3] Hilbert's Irreducibility Theorem via Random Walks
    Bary-Soroker, Lior
    Garzoni, Daniele
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (14) : 12512 - 12537
  • [4] Random walks on the circle and Diophantine approximation
    Berkes, Istvan
    Borda, Bence
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, : 409 - 440
  • [5] The Liouville property and random walks on topological groups
    Schneider, Friedrich Martin
    Thom, Andreas
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (03) : 483 - 513
  • [6] Polya's Theorem on Random Walks via Polya's Urn
    Levin, David A.
    Peres, Yuval
    AMERICAN MATHEMATICAL MONTHLY, 2010, 117 (03): : 220 - 231
  • [7] Random walks, spectral gaps, and Khintchine's theorem on fractals
    Khalil, Osama
    Luethi, Manuel
    INVENTIONES MATHEMATICAE, 2023, 232 (02) : 713 - 831
  • [8] Random walks, spectral gaps, and Khintchine’s theorem on fractals
    Osama Khalil
    Manuel Luethi
    Inventiones mathematicae, 2023, 232 : 713 - 831
  • [9] Δ-FUNCTIONS ON RECURRENT RANDOM WALKS
    Manivannan, V. R.
    Venkataraman, M.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (01): : 119 - 129
  • [10] A note on recurrent random walks
    Cheliotis, D
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (10) : 1025 - 1031