Dynamic stability of the process of turning nickel superalloys using a toolholder produced by selective laser sintering

被引:0
|
作者
Gutnichenko, O. A. [1 ]
Bushlya, V. M. [1 ]
Zhou, J. M. [1 ]
Avdovic, P. [2 ]
Simmons, U. [2 ]
Stahl, J. -E. [1 ]
机构
[1] Lund Univ, SE-22100 Lund, Sweden
[2] Siemens Turbomachinery AB, S-61231 Finspang, Sweden
关键词
dynamic stability; turning; Inconel; 718; tool wear; wavelet analysis; 0-1; test; INCONEL; 718; MACHINABILITY; ALUMINA;
D O I
10.3103/S1063457613060075
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper presents the results of a comparative analysis of dynamic stability of SiC whisker reinforced alumina tools used in a conventional and prototype toolholders when turning a nickel-based superalloy Inconel 718. The use of the prototype toolholder with a cellular spatial structure is shown to significantly suppress vibrations during the machining operation and stabilize the cutting process within the cutting speed range between 200 and 500 m/min. Considering the identical nature of tool wear rate and the analytical ellaborations regarding the process dynamics, the above-mentioned benefits are related to damping properties of the proposed toolholder.
引用
收藏
页码:391 / 398
页数:8
相关论文
共 50 条
  • [1] Dynamic stability of the process of turning nickel superalloys using a toolholder produced by selective laser sintering
    O. A. Gutnichenko
    V. M. Bushlya
    J. M. Zhou
    P. Avdovic
    U. Simmons
    J. -E. Ståhl
    Journal of Superhard Materials, 2013, 35 : 391 - 398
  • [2] Staged thermomechanical testing of nickel superalloys produced by selective laser melting
    Xu, Zhengkai
    Hyde, C. J.
    Thompson, A.
    Leach, R. K.
    Maskery, I.
    Tuck, C.
    Clare, A. T.
    MATERIALS & DESIGN, 2017, 133 : 520 - 527
  • [3] Process optimisation of selective laser melting using energy density model for nickel based superalloys
    Carter, L. N.
    Wang, X.
    Read, N.
    Khan, R.
    Aristizabal, M.
    Essa, K.
    Attallah, M. M.
    MATERIALS SCIENCE AND TECHNOLOGY, 2016, 32 (07) : 657 - 661
  • [4] THE SELECTIVE LASER SINTERING PROCESS
    NUTT, K
    PHOTONICS SPECTRA, 1991, 25 (09) : 102 - 104
  • [5] Selective laser sintering process management using a relational database
    Shi, DP
    Gibson, I
    SOLID FREEFORM FABRICATION PROCEEDINGS, AUGUST 1999, 1999, : 85 - 93
  • [6] Optimization of selective laser sintering process conditions using stable sintering region approach
    Lupone, F.
    Padovano, E.
    Pietroluongo, M.
    Giudice, S.
    Ostrovskaya, O.
    Badini, C.
    EXPRESS POLYMER LETTERS, 2021, 15 (02): : 177 - 192
  • [7] Fabrication of Scaffold in Tissue Engineering using Selective Laser Sintering Process
    Thokal, Gajanan Nanasaheb
    Patil, Chandrakant Ramesh
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2019, 27 (02): : 1013 - 1023
  • [8] Copper and Nickel Microsensors Produced by Selective Laser Reductive Sintering for Non-Enzymatic Glucose Detection
    Tumkin, Ilya I.
    Khairullina, Evgeniia M.
    Panov, Maxim S.
    Yoshidomi, Kyohei
    Mizoshiri, Mizue
    MATERIALS, 2021, 14 (10)
  • [9] Dynamic healable polyurethane for selective laser sintering
    Sun, Shaojie
    Gan, Xinpeng
    Wang, Zhanhua
    Fu, Daihua
    Pu, Wuli
    Xia, Hesheng
    ADDITIVE MANUFACTURING, 2020, 33
  • [10] Fractal scan strategies for selective laser melting of 'unweldable' nickel superalloys
    Catchpole-Smith, S.
    Aboulkhair, N.
    Parry, L.
    Tuck, C.
    Ashcroft, I. A.
    Clare, A.
    ADDITIVE MANUFACTURING, 2017, 15 : 113 - 122