A CRISPR/dCas9 toolkit for functional analysis of maize genes

被引:21
|
作者
Gentzel, Irene N. [1 ]
Park, Chan Ho [1 ]
Bellizzi, Maria [1 ]
Xiao, Guiqing [1 ]
Gadhave, Kiran R. [2 ]
Murphree, Colin [2 ]
Yang, Qin [2 ]
LaMantia, Jonathan [3 ]
Redinbaugh, Margaret G. [1 ,3 ]
Balint-Kurti, Peter [2 ]
Sit, Tim L. [2 ]
Wang, Guo-Liang [1 ]
机构
[1] Ohio State Univ, Dept Plant Pathol, 483B Kottman Hall,2021 Coffey Rd, Columbus, OH 43210 USA
[2] North Carolina State Univ, Dept Entomol & Plant Pathol, Raleigh, NC 27695 USA
[3] ARS, Corn Soybean & Wheat Qual Res Unit, USDA, Wooster, OH 44691 USA
关键词
Maize; Protoplasts; CRISPR; Cas9; Transcription activation; Transcription suppression; AGROBACTERIUM-MEDIATED TRANSFORMATION; MESOPHYLL PROTOPLASTS; MOSAIC-VIRUS; FLORAL DIP; SYSTEM; CRISPR/CAS9; EXPRESSION; PLANT; TRANSCRIPTION; VECTOR;
D O I
10.1186/s13007-020-00675-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background TheClusteredRegularlyInterspacedShortPalindromicRepeats (CRISPR)/Cas9 system has become a powerful tool for functional genomics in plants. The RNA-guided nuclease can be used to not only generate precise genomic mutations, but also to manipulate gene expression when present as a deactivated protein (dCas9). Results In this study, we describe a vector toolkit for analyzing dCas9-mediated activation (CRISPRa) or inactivation (CRISPRi) of gene expression in maize protoplasts. An improved maize protoplast isolation and transfection method is presented, as well as a description of dCas9 vectors to enhance or repress maize gene expression. Conclusions We anticipate that this maize protoplast toolkit will streamline the analysis of gRNA candidates and facilitate genetic studies of important trait genes in this transformation-recalcitrant plant.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Functional validation of GWA hits for IgG glycosylation pleiotropic with inmflamatory diseases using CRISPR/dCas9 molecular tools
    Miskec, Karlo
    Frkatovic, Azra
    Mijakovac, Anika
    Lauc, Gordan
    Vojta, Aleksandar
    Zoldos, Vlatka
    GLYCOBIOLOGY, 2021, 31 (12) : 1738 - 1738
  • [32] RNA polymerase collisions with dCas9
    Agapov, A.
    Esyunina, D.
    Kulbachinskiy, A.
    FEBS OPEN BIO, 2021, 11 : 238 - 238
  • [33] A study of RNA polymerase-Template interaction utilizing CRISPR/dCas9 protein
    Hogaboom, Jeremy R.
    Enkhbaatar, Khulan
    King, Maxwell J. M.
    Rohlman, Christopher E.
    FASEB JOURNAL, 2022, 36
  • [34] Inducible gene expression control using CRISPR/dCas9 and antiviral protease inhibitors
    Tague, Elliot
    Ngo, John
    PROTEIN SCIENCE, 2017, 26 : 200 - 200
  • [35] Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase
    Joaquin Felipe Roca Paixão
    François-Xavier Gillet
    Thuanne Pires Ribeiro
    Caroline Bournaud
    Isabela Tristan Lourenço-Tessutti
    Daniel D. Noriega
    Bruno Paes de Melo
    Janice de Almeida-Engler
    Maria Fatima Grossi-de-Sa
    Scientific Reports, 9
  • [36] Short communication: An inducible CRISPR/dCas9 gene repression system in Lactococcus lactis
    Xiong, Zhi-Qiang
    Wei, Yun-Ying
    Kong, Ling-Hui
    Song, Xin
    Yi, Hua-Xi
    Ai, Lian-Zhong
    JOURNAL OF DAIRY SCIENCE, 2020, 103 (01) : 161 - 165
  • [37] Development of CRISPR/dCas9 systems to address muscle fibrosis in Duchenne muscular dystrophy
    March, J. T.
    Dickson, G.
    Popplewell, L.
    NEUROMUSCULAR DISORDERS, 2018, 28 : S7 - S7
  • [38] CRISPR/dCas9 Activated Expression of Cardiomyocyte Differentiation Factors in CDCs in Myocardial Infarctions
    Sano, T.
    Ishigami, S.
    Bandaru, S.
    Ito, T.
    Sano, S.
    EUROPEAN HEART JOURNAL, 2019, 40 : 3275 - 3275
  • [39] Ultrafast circulating breast tumor DNA detection in blood by CRISPR/dCas9 biosensor
    Uygun, Z. O.
    Yeniay, L.
    Sagin, F.
    FEBS OPEN BIO, 2021, 11 : 279 - 279
  • [40] Host Cell Transcriptional Tuning with CRISPR/dCas9 to Mitigate the Effects of Toxin Exposure
    Metzger, David
    Miller, Kennedy
    Lyon, Wanda
    Migliozzi, Rebecca
    Pangburn, Heather A.
    Saldanha, Roland
    ACS SYNTHETIC BIOLOGY, 2022, 11 (11): : 3657 - 3668