Positive Solutions for Multiparameter Semipositone Discrete Boundary Value Problems via Variational Method

被引:7
|
作者
Yu, Jianshe [1 ,2 ]
Zhu, Benshi [1 ]
Guo, Zhiming [2 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
[2] Guangzhou Univ, Coll Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
D O I
10.1155/2008/840458
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence, multiplicity, and nonexistence of positive solutions for multiparameter semipositone discrete boundary value problems by using nonsmooth critical point theory and subsuper solutions method. Copyright (c) 2008 Jianshe Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Positive solutions of multiparameter semipositone p-Laplacian problems
    Perera, Kanishka
    Shivaji, Ratnasingham
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1397 - 1400
  • [32] POSITIVE SOLUTIONS FOR DISCRETE BOUNDARY VALUE PROBLEMS
    Graef, John R.
    Moussaoui, Toufik
    DYNAMIC SYSTEMS AND APPLICATIONS, 2009, 18 (02): : 265 - 273
  • [33] EXISTENCE OF SOLUTIONS TO MIXED BOUNDARY VALUE PROBLEMS VIA VARIATIONAL METHOD
    Ge, Weigao
    Pang, Huihui
    Tian, Yu
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 277 - 287
  • [34] Positive Solutions for Semipositone m-point Boundary-value Problems
    Ru Yun Ma*
    Qiao Zhen Ma
    Acta Mathematica Sinica, 2004, 20 : 273 - 282
  • [35] Positive Solutions for a Coupled System of Nonlinear Semipositone Fractional Boundary Value Problems
    Rao, S. Nageswara
    Meetei, M. Zico
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 2019
  • [36] Positive solutions for semipositone (k,n-k) boundary value problems
    He, XM
    Cao, DM
    Ge, WG
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (09): : 1361 - 1371
  • [37] The existence of multiple positive solutions for a class of semipositone Dirichlet boundary value problems
    Zhong, Minling
    Zhang, Xinguang
    Journal of Applied Mathematics and Computing, 2012, 38 (1-2) : 145 - 159
  • [38] Existence of positive solutions for a nonlinear semipositone boundary value problems on a time scale
    Panigrahi, Saroj
    Rout, Sandip
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (03): : 413 - 437
  • [39] Existence of positive solutions for semipositone multi-point boundary value problems
    Feng, Hanying
    Bai, Donglong
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) : 2287 - 2292
  • [40] Systems of semipositone discrete fractional boundary value problems
    Dahal, Rajendra
    Duncan, David
    Goodrich, Christopher S.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (03) : 473 - 491