Nonparametric methods for time series and dynamical systems

被引:0
|
作者
Guegan, D
Scargle, JD
机构
关键词
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present different approaches to reconstruct a chaotic map and to identify existence of chaos. Using nonparametric techniques, we construct - from observational data - estimates of the embedding dimension, the chaotic map, the invariant measure and the Lyapunov exponent.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 50 条
  • [41] Using difference-based methods for inference in nonparametric regression with time series errors
    Hall, P
    Van Keilegom, I
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 : 443 - 456
  • [42] The Estimating Parameter and Number of Knots for Nonparametric Regression Methods in Modelling Time Series Data
    Araveeporn, Autcha
    MODELLING, 2024, 5 (04): : 1413 - 1434
  • [43] Notes to Time Reverse Methods for Detecting Causality of Dynamical Systems
    Jakubik, Jozef
    2019 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON MEASUREMENT (MEASUREMENT 2019), 2019, : 106 - 109
  • [44] An algorithm for estimating fixed points of dynamical systems from time series
    Aguirre, LA
    Souza, AVP
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2203 - 2213
  • [45] Pattern identification in dynamical systems via symbolic time series analysis
    Rajagopalan, Venkatesh
    Ray, Asok
    Samsi, Rohan
    Mayer, Jeffrey
    PATTERN RECOGNITION, 2007, 40 (11) : 2897 - 2907
  • [46] Dynamical control of systems near bifurcation points using time series
    Hong, Zhao
    Yaowen, Liu
    Huican, Ping
    Yinghai, Wang
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (01): : 348 - 353
  • [47] Reconstructing bifurcation diagrams of dynamical systems using measured time series
    Bagarinao, E
    Pakdaman, K
    Nomura, T
    Sato, S
    METHODS OF INFORMATION IN MEDICINE, 2000, 39 (02) : 146 - 149
  • [48] Characterizing the complexity of time series networks of dynamical systems: A simplicial approach
    Chutani, Malayaja
    Rao, Nithyanand
    Nirmal Thyagu, N.
    Gupte, Neelima
    CHAOS, 2020, 30 (01)
  • [49] Modified Bayesian approach for the reconstruction of dynamical systems from time series
    Mukhin, DN
    Feigin, AM
    Loskutov, EM
    Molkov, YI
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [50] Hierarchical Linear Dynamical Systems: A new model for clustering of time series
    Cinar, Goktug T.
    Loza, Carlos A.
    Principe, Jose C.
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2464 - 2470