Applications of neural networks for free unfolding of experimental data from fusion neutron spectrometers

被引:0
|
作者
Ronchi, E. [1 ]
Conroy, S. [1 ]
Sunden, E. Andersson [1 ]
Ericsson, G. [1 ]
Johnson, M. Gatu [1 ]
Hellesen, C. [1 ]
Sjostrand, H. [1 ]
Weiszflog, M. [1 ]
机构
[1] JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
关键词
D O I
10.1142/9789812799470_0005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Free unfolding in neutron spectroscopy means reconstructing energy spectra from experimental data without a priori assumptions regarding their shape. Due to the ill-conditioned nature of the problem, this cannot be done analytically. Neural networks (NN) are here applied to this task and synthetic data is used for training and testing. Results showed very consistent performance especially in the region of low and medium counts, where they fall near the Poisson statistical boundary. Comparison with other unfolding methods validated these results. Application time on the order of mu s makes NN suitable for real-time analysis. This approach can be applied to any instrument of which the response function is known.
引用
下载
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
  • [21] Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks
    Ido, A. Sharghi
    Bonyadi, M. R.
    Etaati, G. R.
    Shahriari, M.
    APPLIED RADIATION AND ISOTOPES, 2009, 67 (10) : 1912 - 1918
  • [22] Exploitation of neutron biodynamics data from pulsed-source spectrometers
    Middendorf, H. D.
    JOURNAL OF NEUTRON RESEARCH, 2007, 15 (01) : 75 - 81
  • [23] Predicting the free calcium oxide content on the basis of rough sets, neural networks and data fusion
    Shu, Yunxing
    Yun, Shiwei
    Ge, Bo
    Life System Modeling and Simulation, Proceedings, 2007, 4689 : 326 - 334
  • [24] A nonlinear system predictor from experimental data using neural networks
    Carotenuto, R
    Franchina, L
    Coli, M
    PROCEEDINGS OF THE TWENTY-EIGHTH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 1996, : 148 - 152
  • [25] Identifying nonclassicality from experimental data using artificial neural networks
    Gebhart, Valentin
    Bohmann, Martin
    Weiher, Karsten
    Biagi, Nicola
    Zavatta, Alessandro
    Bellini, Marco
    Agudelo, Elizabeth
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [26] Data fusion and artificial neural networks for biomass estimation
    Leal, RR
    Butler, P
    Lane, P
    Payne, PA
    IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 1997, 144 (02) : 69 - 72
  • [27] APPLICATION OF NEURAL NETWORKS IN TARGET TRACKING DATA FUSION
    CHIN, L
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1994, 30 (01) : 281 - 287
  • [28] Fusion of Big Data and Neural Networks for Predicting Thyroid
    Sapna, S.
    2016 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2016, : 243 - 247
  • [29] Nonlinear optimal estimation for neural networks data fusion
    Ma, Y
    Wang, XT
    Li, B
    Fu, JG
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 2, 2004, 3174 : 701 - 706
  • [30] Multisensor data fusion using Elman neural networks
    Kolanowski, Krzysztof
    Swietlicka, Aleksandra
    Kapela, Rafal
    Pochmara, Janusz
    Rybarczyk, Andrzej
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 236 - 244