Multiplicity of Solutions for an Elliptic Problem with Critical Sobolev-Hardy Exponents and Concave-Convex Nonlinearities

被引:0
|
作者
Li, Juan [1 ]
Tong, Yuxia [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Hebei United Univ, Coll Sci, Tangshan 063009, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS;
D O I
10.1155/2014/180105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of multiple solutions for the following elliptic problem: -Delta(p)u - mu(vertical bar u vertical bar(p-2)u/vertical bar x vertical bar(p)) = (vertical bar u vertical bar(p)*(t)-2/vertical bar x vertical bar t)u + lambda(vertical bar u vertical bar(q-2)/vertical bar x vertical bar(s))u, u epsilon W-0(1,p)(Omega). We prove that if 1 <= q < p < N, then there is a mu(0), such that for any mu epsilon (0,mu(0)), the above mentioned problem possesses infinitely many weak solutions. Our result generalizes a similar result (Azorero and Alonso, 1991).
引用
收藏
页数:6
相关论文
共 50 条