Determining the Heilbronn Configuration of Seven Points in Triangles via Symbolic Computation

被引:1
|
作者
Zeng, Zhenbing [1 ]
Chen, Liangyu [2 ]
机构
[1] Shanghai Univ, 99 Shangda Rd, Shanghai 200444, Peoples R China
[2] East China Normal Univ, 3633 North Zhongshan Rd, Shanghai 200062, Peoples R China
来源
COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019) | 2019年 / 11661卷
基金
中国国家自然科学基金;
关键词
Heilbronn number; Combinatorial geometry optimization; Symbolic computation;
D O I
10.1007/978-3-030-26831-2_30
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we first recall some rigorously proved results related to the Heilbronn numbers and the corresponding optimal configurations of n = 5, 6, 7 points in squares, disks, and general convex bodies K in the plane, n = 5, 6 points in triangles and a bundle of approximate results obtained by numeric computation in the Introduction section. And then in the second section we will present a proof to a conjecture on the Heilbronn number for seven points in the triangle through solving a group of non-linear optimization problems via symbolic computation. In the third section we list three unsolved well-formed such non-linear programming problems corresponding to Heilbronn configurations for n = 8, 9 points in squares and 8 points in triangle, we expect they can be solved by similar method we used in the Section two. In the final section we mention two generalizations of the classic Heilbronn triangle problem. The paper aims to provide a concise guide to further studies on Heilbronn-type problems for small number of points in specific convex bodies.
引用
收藏
页码:458 / 477
页数:20
相关论文
共 50 条
  • [21] Computation of Maximum Loading Points via the Factored Load Flow
    Gomez-Quiles, Catalina
    Gomez-Exposito, Antonio
    Vargas, Walter
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 4128 - 4134
  • [22] Soliton collision in a general coupled nonlinear Schrodinger system via symbolic computation
    Wang, Ming
    Shan, Wen-Rui
    Lu, Xing
    Xue, Yu-Shan
    Lin, Zhi-Qiang
    Tian, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11258 - 11264
  • [23] PARALLEL DIGITAL AND SYMBOLIC OPTICAL COMPUTATION VIA OPTICAL-PHASE CONJUGATION
    LI, Y
    EICHMANN, G
    DORISINVILLE, R
    ALFANO, RR
    APPLIED OPTICS, 1988, 27 (10): : 2025 - 2032
  • [24] Dynamical behavior of analytical soliton solutions to the Kuralay equations via symbolic computation
    Hussain, Akhtar
    Ibrahim, Tarek F.
    Birkea, Fathea M. Osman
    Al-Sinan, Bushra R.
    NONLINEAR DYNAMICS, 2024, 112 (22) : 20231 - 20254
  • [25] Constructing orthogonal designs in powers of two via symbolic computation and rewriting techniques
    Kotsireas, Ilias
    Kutsia, Temur
    Simos, Dimitris E.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (1-3) : 213 - 236
  • [26] On a generalized Kadomtsev-Petviashvili equation with variable coefficients via symbolic computation
    Li, Li-Li
    Tian, Bo
    Zhang, Chun-Yi
    Xu, Tao
    PHYSICA SCRIPTA, 2007, 76 (05) : 411 - 417
  • [27] Lump solutions to a generalized Hietarinta-type equation via symbolic computation
    Batwa, Sumayah
    Ma, Wen-Xiu
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (03) : 435 - 450
  • [28] Lump solutions to a generalized Hietarinta-type equation via symbolic computation
    Sumayah Batwa
    Wen-Xiu Ma
    Frontiers of Mathematics in China, 2020, 15 : 435 - 450
  • [29] Use of symbolic computation for the problem of stabilization via small order feedback controllers
    City Univ, London, United Kingdom
    IEE Colloq Dig, 78 (var paging):
  • [30] Constructing orthogonal designs in powers of two via symbolic computation and rewriting techniques
    Ilias Kotsireas
    Temur Kutsia
    Dimitris E. Simos
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 213 - 236