Graphs with large distinguishing chromatic number

被引:0
|
作者
Cavers, Michael [1 ]
Seyffarth, Karen [1 ]
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2013年 / 20卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The distinguishing chromatic number chi(D)(G) of a graph G is the minimum number of colours required to properly colour the vertices of G so that the only automorphism of G that preserves colours is the identity. For a graph G of order n, it is clear that 1 <= chi(D)(G) <= n, and it has been shown that chi(D)(G) = n if and only if G is a complete multipartite graph. This paper characterizes the graphs G of order n satisfying chi(D)(G) = n - 1 or chi(D)(G) = n - 2.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The Distinguishing Chromatic Number of Kneser Graphs
    Che, Zhongyuan
    Collins, Karen L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [2] Distinguishing chromatic number of random Cayley graphs
    Balachandran, Niranjan
    Padinhatteeri, Sajith
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2447 - 2455
  • [3] On the distinguishing chromatic number of the Kronecker products of graphs
    Rastgar, Zinat
    Khashyarmanesh, Kazem
    Afkhami, Mojgan
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 63 - 70
  • [4] DISTINGUISHING CHROMATIC NUMBER OF CARTESIAN PRODUCTS OF GRAPHS
    Choi, Jeong Ok
    Hartke, Stephen G.
    Kaul, Hemanshu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 82 - 100
  • [5] SUBGRAPHS OF LARGE CONNECTIVITY AND CHROMATIC NUMBER IN GRAPHS OF LARGE CHROMATIC NUMBER
    ALON, N
    KLEITMAN, D
    THOMASSEN, C
    SAKS, M
    SEYMOUR, P
    JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 367 - 371
  • [6] The Adjacent Vertex Distinguishing Total Chromatic Number of Graphs
    Wang, Zhiwen
    Zhu, Enqiang
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [7] The adjacent vertex distinguishing total chromatic number of graphs
    Wang, Zhiwen
    Zhu, Enqiang
    2010 4th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2010, 2010,
  • [8] On the adjacent vertex distinguishing edge chromatic number of graphs
    Wang, Zhiwen
    ARS COMBINATORIA, 2016, 124 : 379 - 388
  • [9] Large Chromatic Number and Ramsey Graphs
    Csaba Biró
    Zoltán Füredi
    Sogol Jahanbekam
    Graphs and Combinatorics, 2013, 29 : 1183 - 1191
  • [10] Large Chromatic Number and Ramsey Graphs
    Biro, Csaba
    Fueredi, Zoltan
    Jahanbekam, Sogol
    GRAPHS AND COMBINATORICS, 2013, 29 (05) : 1183 - 1191