Exactly solvable models with PT-symmetry and with an asymmetric coupling of channels

被引:13
|
作者
Znojil, Miloslav [1 ]
机构
[1] Ustav Jademe Fyziky AV CR, Rez 25068, Czech Republic
来源
关键词
D O I
10.1088/0305-4470/39/15/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bound states generated by the K coupled PT-symmetric square wells are studied in a series of models where the Hamiltonians are assumed R-pseudo-Hermitian and R-2-symmetric. Specific rotation-like generalized parities R are considered such that R-N = I at some integers N. We show how our assumptions make the models exactly solvable and quasi-Hermitian. This means that they possess the real spectra as well as the standard probabilistic interpretation.
引用
收藏
页码:4047 / 4061
页数:15
相关论文
共 50 条
  • [31] Real Spectra in Logarithmic model PT-symmetry operators: Iso-spectra in Logarithmic PT-symmetry
    Rath, Biswanath
    Jarrar, Rabab
    Shanak, Hussein
    Wannan, Rania
    Asad, Jihad
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 2005 - 2008
  • [32] Relativistic exactly solvable models
    Lavrenov, AN
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (10) : 1794 - 1796
  • [33] EXACTLY SOLVABLE MODELS OF RENORMALIZATION
    LERNER, EC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (02): : 178 - 178
  • [34] Exactly solvable pairing models
    Draayer, JP
    Gueorguiev, VG
    Sviratcheva, KD
    Bahri, C
    Pan, F
    Georgieva, AI
    KEY TOPICS IN NUCLEAR STRUCTURE, 2005, : 483 - 494
  • [35] Symmetry-enriched string nets: Exactly solvable models for SET phases
    Heinrich, Chris
    Burnell, Fiona
    Fidkowski, Lukasz
    Levin, Michael
    PHYSICAL REVIEW B, 2016, 94 (23)
  • [36] Exactly solvable models for U(1) symmetry-enriched topological phases
    Wang, Qing-Rui
    Cheng, Meng
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [37] Supersymmetry, PT-symmetry and spectral bifurcation
    Abhinav, Kumar
    Panigrahi, P. K.
    ANNALS OF PHYSICS, 2010, 325 (06) : 1198 - 1206
  • [38] PT-Symmetry for Elastic Negative Refraction
    Hou, Zhilin
    Ni, Huiqin
    Assouar, Badreddine
    PHYSICAL REVIEW APPLIED, 2018, 10 (04):
  • [39] Optical structures with local PT-symmetry
    Bendix, O.
    Fleischmann, R.
    Kottos, T.
    Shapiro, B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (26)
  • [40] Strengthened PT-symmetry with P≢ P
    Znojil, Miloslav
    PHYSICS LETTERS A, 2006, 353 (06) : 463 - 468