Exactly solvable models with PT-symmetry and with an asymmetric coupling of channels

被引:13
|
作者
Znojil, Miloslav [1 ]
机构
[1] Ustav Jademe Fyziky AV CR, Rez 25068, Czech Republic
来源
关键词
D O I
10.1088/0305-4470/39/15/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Bound states generated by the K coupled PT-symmetric square wells are studied in a series of models where the Hamiltonians are assumed R-pseudo-Hermitian and R-2-symmetric. Specific rotation-like generalized parities R are considered such that R-N = I at some integers N. We show how our assumptions make the models exactly solvable and quasi-Hermitian. This means that they possess the real spectra as well as the standard probabilistic interpretation.
引用
收藏
页码:4047 / 4061
页数:15
相关论文
共 50 条
  • [1] Fragile PT-symmetry in a solvable model
    Znojil, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) : 4418 - 4430
  • [2] PT symmetry of a conditionally exactly solvable potential
    Sinha, A
    Lévai, G
    Roy, P
    PHYSICS LETTERS A, 2004, 322 (1-2) : 78 - 83
  • [3] An explicitly solvable model of the spontaneous PT-symmetry breaking
    Jakubsky, V
    Znojil, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2005, 55 (09) : 1113 - 1116
  • [4] Exactly Solvable Models and Spontaneous Symmetry Breaking
    L’ubomír Martinovic̆
    Few-Body Systems, 2012, 52 : 449 - 455
  • [5] Exactly solvable lattice models with crossing symmetry
    Simon, Steven H.
    Fendley, Paul
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [6] Exactly Solvable Models and Spontaneous Symmetry Breaking
    Martinovic, L'ubomir
    FEW-BODY SYSTEMS, 2012, 52 (3-4) : 449 - 455
  • [7] PT-symmetry berry phases,topology and PT-symmetry breaking
    Jinghui Pi
    Ning Ning Sun
    Rong Lü
    CommunicationsinTheoreticalPhysics, 2020, 72 (04) : 47 - 53
  • [8] Systematic study on exactly solvable trigonometric potentials with PT symmetry
    Jia, CS
    Yi, LZ
    Zhao, YQ
    Liu, JY
    Sun, LT
    MODERN PHYSICS LETTERS A, 2005, 20 (23) : 1753 - 1761
  • [9] PT-symmetry berry phases, topology and PT-symmetry breaking
    Pi, Jinghui
    Sun, NingNing
    Lu, Rong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (04)
  • [10] PT-symmetry in optics
    Zyablovsky, A. A.
    Vinogradov, A. P.
    Pukhov, A. A.
    Dorofeenko, A. V.
    Lisyansky, A. A.
    PHYSICS-USPEKHI, 2014, 57 (11) : 1063 - 1082