Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility

被引:30
|
作者
Baker, K. L. [1 ]
Thomas, C. A. [2 ]
Casey, D. T. [1 ]
Hohenberger, M. [1 ]
Khan, S. [1 ]
Spears, B. K. [1 ]
Landen, O. L. [1 ]
Nora, R. [1 ]
Woods, D. T. [1 ]
Milovich, J. L. [1 ]
Berger, R. L. [1 ]
Strozzi, D. [1 ]
Weber, C. [1 ]
Clark, D. [1 ]
Hurricane, O. A. [1 ]
Callahan, D. A. [1 ]
Kritcher, A. L. [1 ]
Bachmann, B. [1 ]
Benedetti, L. R. [1 ]
Bionta, R. [1 ]
Celliers, P. M. [1 ]
Fittinghoff, D. [1 ]
Goyon, C. [1 ]
Hatarik, R. [1 ]
Izumi, N. [1 ]
Johnson, M. Gatu [3 ]
Kyrala, G. [4 ]
Ma, T. [1 ]
Meaney, K. [4 ]
Millot, M. [1 ]
Nagel, S. R. [1 ]
Patel, P. K. [1 ]
Turnbull, D. [2 ]
Volegov, P. L. [4 ]
Yeamans, C. [1 ]
Wilde, C. [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[3] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
FUSION;
D O I
10.1103/PhysRevE.102.023210
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper presents a study on hotspot parameters in indirect-drive, inertially confined fusion implosions as they proceed through the self-heating regime. The implosions with increasing nuclear yield reach the burning-plasma regime, hotspot ignition, and finally propagating burn and ignition. These implosions span a wide range of alpha heating from a yield amplification of 1.7-2.5. We show that the hotspot parameters are explicitly dependent on both yield and velocity and that by fitting to both of these quantities the hotspot parameters can be fit with a single power law in velocity. The yield scaling also enables the hotspot parameters extrapolation to higher yields. This is important as various degradation mechanisms can occur on a given implosion at fixed implosion velocity which can have a large impact on both yield and the hotspot parameters. The yield scaling also enables the experimental dependence of the hotspot parameters on yield amplification to be determined. The implosions reported have resulted in the highest yield (1.73 x 10(16) +/- 2.6%), yield amplification, pressure, and implosion velocity yet reported at the National Ignition Facility.
引用
收藏
页数:9
相关论文
共 44 条
  • [21] Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility
    Palaniyappan, S.
    Sauppe, J. P.
    Tobias, B. J.
    Kawaguchi, C. F.
    Flippo, K. A.
    Zylstra, A. B.
    Landen, O. L.
    Shvarts, D.
    Malka, E.
    Batha, S. H.
    Bradley, P. A.
    Loomis, E. N.
    Vazirani, N. N.
    Kot, L.
    Schmidt, D. W.
    Day, T. H.
    Gonzales, R.
    Kline, J. L.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [22] Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility
    Hohenberger, M.
    Casey, D. T.
    Thomas, C. A.
    Landen, O. L.
    Baker, K. L.
    Benedetti, L. R.
    Callahan, D. A.
    Hurricane, O. A.
    Izumi, N.
    Khan, S. F.
    Ma, T.
    Mariscal, D. A.
    Nagel, S. R.
    Pak, A.
    Spears, B. K.
    PHYSICS OF PLASMAS, 2019, 26 (11)
  • [23] Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility
    Johnson, M. Gatu
    Knauer, J. P.
    Cerjan, C. J.
    Eckart, M. J.
    Grim, G. P.
    Hartouni, E. P.
    Hatarik, R.
    Kilkenny, J. D.
    Munro, D. H.
    Sayre, D. B.
    Spears, B. K.
    Bionta, R. M.
    Bond, E. J.
    Caggiano, J. A.
    Callahan, D.
    Casey, D. T.
    Doppner, T.
    Frenje, J. A.
    Glebov, V. Yu.
    Hurricane, O.
    Kritcher, A.
    LePape, S.
    Ma, T.
    Mackinnon, A.
    Meezan, N.
    Patel, P.
    Petrasso, R. D.
    Ralph, J. E.
    Springer, P. T.
    Yeamans, C. B.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [24] Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
    Hinkel, D. E.
    Hopkins, L. F. Berzak
    Ma, T.
    Ralph, J. E.
    Albert, F.
    Benedetti, L. R.
    Celliers, P. M.
    Doppner, T.
    Goyon, C. S.
    Izumi, N.
    Jarrott, L. C.
    Khan, S. F.
    Kline, J. L.
    Kritcher, A. L.
    Kyrala, G. A.
    Nagel, S. R.
    Pak, A. E.
    Patel, P.
    Rosen, M. D.
    Rygg, J. R.
    Schneider, M. B.
    Turnbull, D. P.
    Yeamans, C. B.
    Callahan, D. A.
    Hurricane, O. A.
    PHYSICAL REVIEW LETTERS, 2016, 117 (22)
  • [25] The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion
    Edwards, M. J.
    Lindl, J. D.
    Spears, B. K.
    Weber, S. V.
    Atherton, L. J.
    Bleuel, D. L.
    Bradley, D. K.
    Callahan, D. A.
    Cerjan, C. J.
    Clark, D.
    Collins, G. W.
    Fair, J. E.
    Fortner, R. J.
    Glenzer, S. H.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A. V.
    Hatchett, S. P.
    Izumi, N.
    Jacoby, B.
    Jones, O. S.
    Koch, J. A.
    Kozioziemski, B. J.
    Landen, O. L.
    Lerche, R.
    MacGowan, B. J.
    MacKinnon, A. J.
    Mapoles, E. R.
    Marinak, M. M.
    Moran, M.
    Moses, E. I.
    Munro, D. H.
    Schneider, D. H.
    Sepke, S. M.
    Shaughnessy, D. A.
    Springer, P. T.
    Tommasini, R.
    Bernstein, L.
    Stoeffl, W.
    Betti, R.
    Boehly, T. R.
    Sangster, T. C.
    Glebov, V. Yu.
    McKenty, P. W.
    Regan, S. P.
    Edgell, D. H.
    Knauer, J. P.
    Stoeckl, C.
    Harding, D. R.
    Batha, S.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [26] Modeling ablator defects as a source of mix in high-performance implosions at the National Ignition Facility
    Clark, D. S.
    Allen, A.
    Baxamusa, S. H.
    Biener, J.
    Biener, M. M.
    Braun, T.
    Davidovits, S.
    Divol, L.
    Farmer, W. A.
    Fehrenbach, T.
    Kong, C.
    Millot, M.
    Milovich, J.
    Nikroo, A.
    Nora, R. C.
    Pak, A. E.
    Rubery, M. S.
    Stadermann, M.
    Sterne, P.
    Weber, C. R.
    Wild, C.
    PHYSICS OF PLASMAS, 2024, 31 (06)
  • [27] Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields
    Shah, R. C.
    Cao, D.
    Aghaian, L.
    Bachmann, B.
    Betti, R.
    Campbell, E. M.
    Epstein, R.
    Forrest, C. J.
    Forsman, A.
    Glebov, V. Yu
    Goncharov, V. N.
    Gopalaswamy, V
    Harding, D. R.
    Hu, S. X.
    Igumenshchev, I., V
    Janezic, R. T.
    Keaty, L.
    Knauer, J. P.
    Kobs, D.
    Lees, A.
    Mannion, O. M.
    Mohamed, Z. L.
    Patel, D.
    Rosenberg, M. J.
    Shmayda, W. T.
    Stoeckl, C.
    Theobald, W.
    Thomas, C. A.
    Volegov, P.
    Woo, K. M.
    Regan, S. P.
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [28] High-yield neutron activation system for the National Ignition Facility
    Barnes, CW
    Murphy, TJ
    Oertel, JA
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2001, 72 (01): : 818 - 821
  • [29] Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
    Doppner, T.
    Hinkel, D. E.
    Jarrott, L. C.
    Masse, L.
    Ralph, J. E.
    Benedetti, L. R.
    Bachmann, B.
    Celliers, P. M.
    Casey, D. T.
    Divol, L.
    Field, J. E.
    Goyon, C.
    Hatarik, R.
    Hohenberger, M.
    Izumi, N.
    Khan, S. F.
    Kritcher, A. L.
    Ma, T.
    MacGowan, B. J.
    Millot, M.
    Milovich, J.
    Nagel, S.
    Pak, A.
    Park, J.
    Patel, P.
    Tommasini, R.
    Volegov, P.
    Weber, C.
    Landen, O. L.
    Callahan, D. A.
    Hurricane, O. A.
    Edwards, M. J.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [30] Optimal choice of multiple line-of-sight measurements determining plasma hotspot velocity at the National Ignition Facility
    Hartouni, E. P.
    Bionta, R. M.
    Eckart, M. J.
    Field, J. E.
    Grim, G. P.
    Hahn, K. D.
    Hatarik, R.
    Jeet, J.
    Kerr, S. M.
    Libby, S. B.
    Moore, A. S.
    Munro, D. H.
    Schlossberg, D. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (02):