A ridge regression estimation approach to the measurement error model

被引:22
|
作者
Saleh, A. K. Md Ehsanes [1 ]
Shalabh [2 ]
机构
[1] Carleton Univ, Ottawa, ON K1S 5B6, Canada
[2] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Linear regression model; Measurement error; Multicollinearity; Reliability matrix; Ridge regression estimators; Shrinkage estimation; Stein type estimators; Preliminary test estimator; PARAMETERS; TESTS;
D O I
10.1016/j.jmva.2013.08.014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the estimation of the parameters of measurement error models where the estimated covariance matrix of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type (1970) ridge regression (RR) modifications of the five quasi-empirical Bayes estimators of the regression parameters of a measurement error model when it is suspected that the parameters may belong to a linear subspace. The modifications are based on the estimated covariance matrix of the estimators of regression parameters. The estimators are compared and the dominance conditions as well as the regions of optimality of the proposed estimators are determined based on quadratic risks. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:68 / 84
页数:17
相关论文
共 50 条
  • [31] Variance estimation in the error components regression model
    Knapp, G
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (09) : 1499 - 1514
  • [32] Bayesian estimation of the biasing parameter for ridge regression: A novel approach
    Rashid, Fareeha
    Altaf, Saima
    Aslam, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7215 - 7225
  • [33] Improving the estimators of the parameters of a probit regression model: A ridge regression approach
    Kibria, B. M. Golam
    Saleh, A. K. Md. E.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1421 - 1435
  • [34] ESTIMATION IN AUTOREGRESSIVE MODEL WITH MEASUREMENT ERROR
    Dedecker, Jerome
    Samson, Adeline
    Taupin, Marie-Luce
    ESAIM-PROBABILITY AND STATISTICS, 2014, 18 : 277 - 307
  • [35] Local influence in linear mixed measurement error models with ridge estimation
    Maksaei, Najmieh
    Rasekh, Abdolrahman
    Babadi, Babak
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 53 (12) : 5899 - 5912
  • [36] On Ecological Regression and Ridge Estimation
    Fuele, E.
    Communications in Statistics. Part B: Simulation and Computation, 24 (02):
  • [37] ON ECOLOGICAL REGRESSION AND RIDGE ESTIMATION
    FULE, E
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1995, 24 (02) : 385 - 398
  • [38] Local earthquake magnitude estimation using ridge regression model
    Ahn, Hyeongki
    Lee, Kyunghyun
    Kim, Hyunchang
    Hu, Mingyuan
    You, Kwanho
    ELECTRONICS LETTERS, 2022, 58 (12) : 465 - 467
  • [39] Quantile based estimation of biasing parameters in ridge regression model
    Suhail, Muhammad
    Chand, Sohail
    Kibria, B. M. Golam
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (10) : 2732 - 2744
  • [40] Spatial Regression with Covariate Measurement Error: A Semiparametric Approach
    Huque, Md Hamidul
    Bondell, Howard D.
    Carroll, Raymond J.
    Ryan, Louise M.
    BIOMETRICS, 2016, 72 (03) : 678 - 686