Linear regression model;
Measurement error;
Multicollinearity;
Reliability matrix;
Ridge regression estimators;
Shrinkage estimation;
Stein type estimators;
Preliminary test estimator;
PARAMETERS;
TESTS;
D O I:
10.1016/j.jmva.2013.08.014
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper considers the estimation of the parameters of measurement error models where the estimated covariance matrix of the regression parameters is ill conditioned. We consider the Hoerl and Kennard type (1970) ridge regression (RR) modifications of the five quasi-empirical Bayes estimators of the regression parameters of a measurement error model when it is suspected that the parameters may belong to a linear subspace. The modifications are based on the estimated covariance matrix of the estimators of regression parameters. The estimators are compared and the dominance conditions as well as the regions of optimality of the proposed estimators are determined based on quadratic risks. (C) 2013 Elsevier Inc. All rights reserved.
机构:
Univ Paris 05, Sorbonne Paris Cite, Lab UMR CNRS MAP5 8145, Paris 6, FranceUniv Paris 05, Sorbonne Paris Cite, Lab UMR CNRS MAP5 8145, Paris 6, France
Dedecker, Jerome
Samson, Adeline
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 05, Sorbonne Paris Cite, Lab UMR CNRS MAP5 8145, Paris 6, FranceUniv Paris 05, Sorbonne Paris Cite, Lab UMR CNRS MAP5 8145, Paris 6, France
Samson, Adeline
Taupin, Marie-Luce
论文数: 0引用数: 0
h-index: 0
机构:
Univ Evry Val Essonne, USC INRA, UMR CNRS 8071, Lab Stat & Genome, Evry, FranceUniv Paris 05, Sorbonne Paris Cite, Lab UMR CNRS MAP5 8145, Paris 6, France
机构:
Sungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South KoreaSungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South Korea
Kim, Hyunchang
Hu, Mingyuan
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Smart Fab Technol, Seoul, South KoreaSungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South Korea
Hu, Mingyuan
You, Kwanho
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South Korea
Sungkyunkwan Univ, Dept Smart Fab Technol, Seoul, South KoreaSungkyunkwan Univ, Dept Elect & Comp Engn, Seoul, South Korea